Stable reconstruction from scattering data

V. P. Palamodov Tel Aviv University

University of Calgary, Geophysical Inversion Workshop August 16, 2006

1. Introduction

D - domain in an Euclidean space E^d ,

 $\mathbf{n}(x)$ - the refraction coefficient (= *inverse* velocity) in D,

The acoustic (Helmholtz) equation:

 $(\Delta + \omega^2 \mathbf{n}^2)u = 0$

Main problem: to evaluate **n** from boundary measurements of solutions u for a fixed time frequency ω .

Example: Scattering of a plane wave in a homogeneous background \mathbf{n}_0 :

 $u=u^{in}+u^{sc},$

 $u^{in} = \exp(2\pi i k \langle \theta, x \rangle), k = \omega \mathbf{n}_0$, is an incident planewave,

 u^{sc} is the scattered wave on a inhomogeneity $\boldsymbol{\delta} = \boldsymbol{n} - \boldsymbol{n}_0$:

Re *u*ⁱⁿ

Im u^{in}

 $\operatorname{Re} u^{sc}/u^{in}$

$\operatorname{Im} u^{sc}/u^{in}$

Courtesy F.Wuebbeling

2. Analysis of scattering for small perturbation of velocity

Scales of perturbation:

Born perturbation: (validity of Born and Rytov approximations): $\int_{\gamma} |\delta| ds = o(\frac{1}{\omega})$;

small perturbation: $\boldsymbol{\delta} = o(\mathbf{n}_0)$.

The last condition is much weaker, since it does not depend on frequency ω .

Constant background velocity:

Set $k = \omega \mathbf{n}_0$ and find a small perturbation $\mathbf{f} = 2\delta \mathbf{n}_0$ from the equation

$$\Delta u + k^2 (1 + \mathbf{f}) u = 0$$

Take $u(\theta; x) = \exp(\iota k[\langle \theta, x \rangle + w])$.

Neglecting the term $k^2 |\nabla w|^2$, we obtain $\Delta w - 2k \langle \theta, \nabla w \rangle = -k \mathbf{f}$.

Fourier transform $\hat{\mathbf{f}}(\xi)$ can be reconstructed in the ball (Ewald ball)

$$\mathsf{B}_{2k} = \left\{ \xi \in \mathsf{E}', |\xi| \le 2k \right\}$$

from the knowledge of the fields $u(\theta; x)$ for all unit vectors θ and all points x in $\partial D \subset E$.

3. Gabor transform

Phase space $\Phi \doteq E \times E'$ of the configuration space E^d .

Liouville volume density $d\lambda \doteq dq \wedge dp$ is canonically defined in Φ .

 $q^1, ..., q^d, p_1, ..., p_d$ are dual coordinates in Φ .

Gabor's "elementary signal" = coherent state in E :

$$\mathbf{e}_{\lambda}(x) \doteq 2^{d/4} \exp(-\pi (x-q)^2 + 2\pi \iota p x),$$
$$\lambda \doteq (q,p) \in \mathsf{E} \times \mathsf{E}'$$

The Gabor function \mathbf{e}_{λ} concentrates ("supported") near q, whereas its Fourier transform $\mathbf{\hat{e}}_{\lambda}$ concentrates near $p \in \mathbf{E}'$, since

 $\hat{\mathbf{e}}_{\lambda} = \mathbf{e}_{\hat{\lambda}}, \text{ where } \lambda = (q,p), \ \hat{\lambda} = (p,-q).$

Portrait of a 2D Gabor function:

The Gabor functions are "asymptotically" orthogonal:

$$|\langle \mathbf{e}_{\lambda} | \mathbf{e}_{\mu} \rangle| = \exp\left(-\frac{\pi}{2}|\lambda - \mu|^2\right).$$
 (1)

For a bounded function **f** the function

$$\mathsf{Gf}(\lambda) = \langle \mathbf{f} | \mathbf{e}_{\lambda} \rangle, \ \lambda \in \Phi$$

is called *Gabor* transform of **f** (windowed Fourier transform).

The Gabor transform is a isometry $L_2(\mathsf{E}) \rightarrow L_2(\Phi)$:

$$\|\mathbf{f}\|^2 = \int_{\Phi} |\langle \mathbf{f} | \mathbf{e}_{\lambda} \rangle|^2 d\lambda.$$

Reconstruction of a function $\mathbf{f} \in L_2$ from its Gabor transform:

$$\mathbf{f}(x) = \int \langle \mathbf{f} | \mathbf{e}_{\lambda} \rangle \mathbf{e}_{\lambda}(x) d\lambda.$$

4. Unstable reconstruction of high frequencies

Space case: d = 3

Constant background, Born perturbation δ . The scattering amplitude is :

$$a(\theta;x) \approx a_B(\theta;x) = k^2 \int \delta(y) \exp(2\pi i k \langle \theta - \tilde{x}, y \rangle) dy,$$

where a_B is the Born approximation, $\tilde{x} \doteq \frac{x}{|x|}, k = \omega \mathbf{n}_0$ and we use the notation $\Delta = \sum \left(\frac{\partial}{2\pi \partial x_i}\right)^2$ in the acoustic equation. Take

$$\boldsymbol{\delta} = \varepsilon \cos(2\pi \langle p, x \rangle) \exp\left(-\pi (x-q)^2\right),\,$$

for some $\lambda = (q, p), q \in D$ and some small ε (a constant factor is omitted). We have

$$a_B(\theta;x) = \varepsilon k^2 [\mathbf{e}_{\mu_1}(\eta) + \mathbf{e}_{\mu_2}(\eta)],$$

where $\eta = k(\theta - \tilde{x}) \in B_{2k}$ and $\mu_1 = (p, -q), \mu_2 = (p, q).$

Both terms $\mathbf{e}_{\mu_1}(\eta)$, $\mathbf{e}_{\mu_2}(\eta)$ are exponentially small as $k \to \infty$, if $|p|/2k \ge 1 + \varepsilon$, since $|\eta - p| \ge \varepsilon k$ for arbitrary directions θ , \tilde{x} .

The true amplitude *a* is also exponentially small.

Conclusion: Stable reconstruction a perturbation $\delta = \mathbf{n} - \mathbf{n}_0$ is impossible, if it is concentrated in the complement to the ball B_R , $R \ge (2 + \varepsilon)k$ for big k, since it generates only evanescent waves.

Theorem. The same is true for any smooth background $\mathbf{n}_0, k = \omega \mathbf{n}_0(q)$,

that is stable reconstruction of the Gabor transform of δ is impossible in the exterior of the tube-like domain

 $\Omega(\mathbf{n}_0,\omega) \doteq \{|p| \leq 2\omega \mathbf{n}(q)\}:$

Case of constant background: $\Omega(\mathbf{n}_0, \omega) = D \times \mathbf{B}_{2k}$.

Uniqueness results: L.Faddeev, A.Calderon, Sylvester-Uhlmann, R.Novikov,

Nachman, Eskin-Ralston, Sjoestrand,...

Information on perturbation is extracted from evanescent waves. To amplify this information non-physical solutions like

$$v(x) = \exp(2\pi(\imath\xi x + \eta x)), \ \xi, \eta \in \mathsf{C}, \xi^2 - \eta^2 = k^2$$

are coupled with evanescent solutions. The reconstruction is exponentially unstable.

5. Scattering on a line

Case d = 1. Write the wave equation in the form

$$\left[\left(\frac{\mathsf{d}}{2\pi\mathsf{d}}\right)^2 + \omega^2\mathbf{n}^2\right](u^{in} + u^{sc}) = 0,$$

where $k = \omega \mathbf{n}_0$, \mathbf{n}_0 be a constant reference coefficient, \mathbf{n} fulfils the only condition: $\mathbf{n}(x) \rightarrow \mathbf{n}_0$ as $|x| \rightarrow \infty$.

The backscattered wave defines the *reflection* coefficient

$$u^{sc}/u^{in} \rightarrow r(k) \text{ as } x \rightarrow -\infty.$$

Theorem. If $V \doteq \operatorname{Var}_{\mathsf{R}} \log \mathbf{n} / \mathbf{n}_0 < \infty$, then

$$\left\| \widehat{\delta}(2\omega) - \frac{r(k)}{\iota k} \right\|_{L_2} \leq 2 \sinh^2 \frac{V}{4} \left\| \frac{r(k)}{\iota k} \right\|_{L_2},$$

where

$$\hat{\delta}(\tau) = \int \exp(-2\pi \imath \tau t) \delta(x(t)) dt, \ \delta = \frac{n - n_0}{\sqrt{nn_0}}$$

and $\mathbf{t} = \mathbf{t}(x) = \int_0^x \mathbf{n}(y) dy$ is the travel time variable.

Moreover, for any $\omega > 0$ the function $\hat{\delta}(\tau)$ can be estimated in the interval $[-2\omega, 2\omega]$ in terms of the reflection r coefficient in the interval [-k,k].

N.Grinberg, (1993), *B.Levitan*'s method. Features of the reconstruction:

- No smallness assumption on the perturbation δ.
- Discontinuous functions **n** are allowed.

Estimate the Gabor transform of $\delta(x)$:

$$\mathbf{Gv}(\lambda) = \int \exp(-\pi(x-q)^2 + 2\pi i(px - \tau \mathbf{t}(x))) dx$$
$$\times \int \hat{\mathbf{v}}(\tau) d\tau.$$

The point $x = q, p = \tau \mathbf{t}'(x) = \tau \mathbf{n}(q)$ gives the main contribution. If $|p| \le 2\omega \mathbf{n}(q)$, then $|\tau| \le 2\omega$ and $\hat{\mathbf{v}}(\tau)$ is determined from the data of the reflection coefficient *r* for frequency $k, |k| \le 2\omega \mathbf{n}_0$.

Conclusion. If we know r(k) for

 $|k| \leq \omega \mathbf{n}_0$, the Gabor transform of $\boldsymbol{\delta}$ is stably reconstructed in the tube-domain

 $\Omega(\mathbf{n};\omega) \doteq \{(q,p) : |p| \le 2\omega \mathbf{n}(q)\}.$ that looks like

Note that the complementary set to the instability domain as in Sect. 4.

6. Spacial case

Evaluate the difference $\delta = \mathbf{n} - \mathbf{n}_0$ in terms of boundary measurements of solutions *u* of

the equation with unknown coefficient **n** $(\Delta + \omega^2 \mathbf{n}^2)u = 0$

and solutions u_0 of a reference equation

$$(\Delta + \omega^2 \mathbf{n}_0^2) u_0 = 0$$

where we denote $\Delta = \sum \left(\frac{\partial}{2\pi \partial x_i}\right)^2$.

Theorem. Suppose that $(\mathbf{n}_0 ds)^2$ and $(\mathbf{n} ds)^2$ are smooth non trapping metrics in a bounded domain $D \subset \mathsf{E}^d, d \geq 3$.

Let $q \in D$ and $t_q = dx/d\tau$ be the tangent vector at q to a geodesic curve γ of the metric \mathbf{n} (τ is the time parameter), t_q^0 is the tangent vector to a geodesic curve γ_0 of \mathbf{n}_0 . Then

$$|\mathsf{G}\delta(\lambda)| \leq C\omega^{-1} \sup_{u,\tilde{u}} \left| \int_{\partial D} (\mathbf{u}\partial_{\nu}\mathbf{u}_{0} - \mathbf{u}_{0}\partial_{\nu}\mathbf{u}) \mathrm{d}S \right| \\ + \omega^{-1/2} r(\lambda;\omega), \quad (2)$$

where $\lambda = (q, p = \omega t_q + \omega t_q^0)$ and \mathbf{u}, \mathbf{u}_0 are Gauss beam solutions of the corresponding metrics.

The constant *C* and the factor $r(\lambda; \omega)$ are uniformly bounded for $q \in D, \omega \ge \omega_0$ and $|t_q \times t_q^0| \ge \varepsilon > 0.$

The statement is also true for the case d = 2, if

 γ and γ_0 have no other common point.

The estimate (2) holds for any point (q,p) in the domain $\Omega(\mathbf{n}, \mathbf{n}_0; \omega)_{\varepsilon}$ defined by

 $q \in D$, $(1 + \varepsilon)\omega|\mathbf{n}(q) - \mathbf{n}_0(q)| \le |p| \le (1 - \varepsilon)\omega(\mathbf{n}(q))$ with uniformly bounded *C* and *r*.

Conclusion. Stable reconstruction of Gabor transform of the perturbation δ is possible in $\Omega(\mathbf{n}, \mathbf{n}_0; \omega)_{\varepsilon}$.

This domain is close to the set $\Omega(\mathbf{n}, \mathbf{n}_0; \omega)_0$:

Perturbative case:

Corollary. Any small perturbation $\delta = \mathbf{n} - \mathbf{n}_0$ can be stably reconstructed in the domain

 $q \in D, \ \omega \varepsilon \leq |p| \leq \omega (2\mathbf{n}_0(q) - \varepsilon),$ if $\varepsilon > |\mathbf{\delta}|.$

This domain is close to the tube domain $\Omega(\mathbf{n}_0; \boldsymbol{\omega}) \doteq \{q \in D, |p| \le 2\omega \mathbf{n}_0(q)\}$. See again picture in Sect. 4.

7. Gauss-beam solutions

The case d = 2.

Theorem. If the metric $(\mathbf{n}ds)^2$ in $D \subset \mathbf{E}^2$ is smooth and non trapping, there exists a frequency ω_0 such that for an arbitrary geodesic curve γ of the metric and any $\omega \ge \omega_0$ there exists a solution $u_{\gamma,\omega}$ of the acoustic equation $(\Delta + \omega^2 \mathbf{n}^2)u_{\gamma,\omega} = 0$ in D such that $u_{\gamma,\omega} = U_\omega + v_\omega$, where

$$U_{\omega} = (\mathbf{n}\omega j)^{-1/4} \exp(2\pi [\imath\omega\varphi - \omega\psi + \imath\chi]),$$

$$\varphi(s,r) = \int_{s_0}^{s} \mathbf{n} d\sigma,$$

$$\psi(s,r) = \frac{\mathbf{n}}{2\mathbf{j}} \left(1 + \imath \left(\log\frac{\mathbf{j}}{\mathbf{n}}\right)_{s}^{\prime} \right) r^{2},$$

$$\chi(s) = -\int_{s_0}^{s} \frac{d\sigma}{2\mathbf{j}},$$

j is the divergence (spread function), s is the natural coordinate along the curve $\gamma = \{r = 0\}, r$ is the Euclidean coordinate in the normal direction and $\int_{D} |v_{\omega}|^2 dx = O(\omega^{-1}).$

The principal term U_{ω} was found by Leontovich and Fock (1944-6). It has the gaussian profile

$$\exp(-\omega\psi) = \exp\left(-\pi\omega\frac{\mathbf{n}}{\mathbf{j}}r^2\right)$$

in the normal cross-section. A Gauss beam solution \mathbf{u}_{γ} is essentially supported in a $O(L^{1/2})$ -nbd of a geodesic γ , where $L = (\omega \mathbf{n})^{-1}$ is the wave length:

8. Sketch of the proof

Green formula for the Gauss beam solutions

 $\int_{\partial D} (\mathbf{u}\partial_{v}\mathbf{u}_{0} - \mathbf{u}_{0}\partial_{v}\mathbf{u}) \mathrm{d}S = \omega^{2} \int_{D} \delta \mathbf{u} \mathbf{u}_{0} \,\mathrm{d}x$

The product $\mathbf{u}\mathbf{u}_0$ is like

which gives evaluation of the integral of the product like

 $\exp(-\pi(r^2+r_0^2))\exp(2\iota(\varphi+\varphi_0))\boldsymbol{\delta}$

localized near the point $q \in D$, where φ and φ_0 are respective Eikonal functions. This integral is close to the Gabor transform of δ at $\lambda = (q, p = t_q + t_q^0)$ in the phase space.

9. Phase space and information Question:

how much information can we get out from the

data of $G\delta(\lambda), \lambda \in \Omega(\mathbf{n}; \omega) \subset \Phi$? General problem:

how large is dimension of the "space" $\Sigma(\Omega)$ of functions in *E*, whose Gabor transform is "supported" in a bounded domain $\Omega \subset \Phi$?

The physical wisdom:

a field (signal, image) concentrated in a large bounded domain Ω of the phase space has about

$$\mathsf{Vol}\,\Omega = \int_\Omega \mathsf{d}\lambda$$

independent degrees of freedom (...,Nyquist, Wigner, Brillouin, Gabor,...).

A rigorous mathematical theory confirms this guess:

The case d = 1, Ω is a box: Landau, Pollak (1961-2)

The general case: the operator

$$L(\Omega)\mathbf{f} = \int_{\Omega} \langle \mathbf{f} | \mathbf{e}_{\lambda} \rangle \mathbf{e}_{\lambda} d\lambda$$

in $L_2(E)$ is called *localization* operator for the domain Ω . It is self-adjoint and has discrete spectrum in (0, 1].

Definition. Let $N(\Omega)$ be the number of eigenvalues of the operator $L(\Omega)$ in the interval

[1/2, 1] and $\Sigma(\Omega)$ be the subspace in $L_2(\mathsf{E})$ spanned by the corresponding eigenfunctions.

Theorem. [P. 2005] *The number* $N(\Omega)$ *is estimated as follows*

 $|N(\Omega) - \text{Vol}(\Omega)| \leq C\text{Vol}(\partial\Omega_l), (3)$ where $l = b \log^{d/2}(\operatorname{diam} \Omega) + c$ and b, c are some constants and G_{ρ} means *l*-neighborhood of G.

In particular, we have

$$\operatorname{Vol}\Omega(\mathbf{n},\mathbf{n}_{0};\omega)=b_{\mathsf{E}}\omega^{d}\int_{D}\left((\mathbf{n}+\mathbf{n}_{0})^{d}-|\mathbf{n}-\mathbf{n}_{0}|^{d}\right)\mathrm{d}x.$$

If the perturbation $\delta = \mathbf{n} - \mathbf{n}_0$ is small, this volume is close to the integral

$$\operatorname{Vol}\Omega(\mathbf{n}_0;2\omega) \sim b_{\mathsf{E}}(2\omega)^d \int_D \mathbf{n}_0^d \mathrm{d}x.$$
(4)

where $b_{\rm E}$ means the volume of the unit ball in E.

Corollary. *The number*

 $N(\omega) \doteq N(\Omega(\mathbf{n}_0; 2\omega))$ has the same asymptotic expansion (4).

Proof is not straightforward, since Vol $(\partial \Omega_{\rho})$, $\Omega = \Omega(\mathbf{n}_0; 2\omega)$ has the same order ~ $C\omega^d$ of growth as the volume Vol (Ω) for big ω and constant ρ , since this domain is stretched in E' directions. The rescaling transformation $q' = \omega^{1/2}q, p' = \omega^{-1/2}p$ in Φ is simplectic and does not change the Liouville volume, whereas it changes the distance functions in E and in E' and the form of a ball in Φ . We now have Vol $(\partial \Omega_l) = O(\omega^{d/2} \log \omega)$ and (3) yields $N(\omega) \sim \text{Vol}(\Omega)$, Q.E.D.

Interpretation: *the quantity*

Vol $\Omega(\mathbf{n}_0; 2\boldsymbol{\omega})$ is equal to the volume of *D* measured by means of the variable length unity $\lambda/2 = (2\omega \mathbf{n}_0(x))^{-1}$.

10. What can we benefit from this knowledge?

An answer: *Try to find out a reasonable basis in* $\Sigma(\Omega(\mathbf{n}_0; \boldsymbol{\omega}))$.

Take a small $\varepsilon > 0$ and a smooth function **m** such that $\mathbf{n}_0 - 3\varepsilon \leq \mathbf{m} \leq \mathbf{n}_0 - 2\varepsilon$ and consider the *Schrödinger operator*

 $\mathbf{S} = -\Delta - 4\omega^2 \mathbf{m}^2$

in D with zero Dirichlet conditions on ∂D . It is self-adjoint and has discrete spectrum.

A **bound state** of this operator is an

eigenfunction *b* with non-positive eigenvalue $\lambda = \lambda(b) \leq 0$.

There are only finite number of bound states, since *S* is bounded from below: $\langle Sg|g \rangle \ge -C\langle g|g \rangle$ for some *C*.

Theorem. The set of bound states $\{b_i\}$ of S is a orthogonal basis in a subspace $B \subset \Sigma(\Omega(\mathbf{n}, \omega))$ such that

$$\frac{\mathsf{dim}\mathsf{B}}{\mathsf{dim}\Sigma(\Omega(\mathbf{n}_0,\omega))} \ge \left(1 - \frac{3\varepsilon}{\mathbf{n}_0}\right)^d - o(1)$$

as $\omega \to \infty$.

Lemma. Any bound state of the operator S is contained in $\Sigma(\Omega(\mathbf{n}_0, \omega))$.

Proof. Take a bound state b, ||b|| = 1; let $\lambda \le 0$ be its eigenvalue. The equation

$$-\Delta b = (4\omega^2 \mathbf{m}^2 + \lambda)b$$

yields the estimate

$$\|\nabla b\|^{2} = \langle (4\omega^{2}\mathbf{m}^{2} + \lambda)b|b\rangle$$
$$\leq 4\omega^{2}\|\mathbf{m}b\|^{2},$$

where $\nabla = \partial/2\pi \partial x$. For an arbitrary real smooth function $\phi \ge 0$

$$\|\nabla(\phi b)\|^{2} = (4\omega^{2}\mathbf{m}^{2} + \lambda)\|\phi b\|^{2} + \|\nabla(\phi)b\|^{2},$$

which yields

$$\|\nabla(\phi b)\|^2 \le 4\omega^2 \|\mathbf{m}\phi b\|^2 + \|\nabla(\phi)b\|^2.$$

The last term is bounded by $M_1(\phi) = \max |\nabla(\phi)|$, which results in

 $\|\nabla(\phi b)\| \leq 2\omega \|\mathbf{m}\phi b\| + O(\omega^{-1}).$ (5)

Similar estimate for higher derivatives are

 $\|\nabla^2(\phi b)\| \le (2\omega)^2 \|\mathbf{m}\phi b\| + O(\omega), (6)$

 $\|\nabla^3(\phi b)\| \le (2\omega)^3 \|\mathbf{m}\phi b\| + O(\omega^2),$

where the remainder $O(\omega^2)$ depends on $\max|\nabla \mathbf{m}|$, and so on.

The estimates for the product ϕb looks like bounds for a bandlimited function of the width $2\omega M$, where

 $M = \max \mathbf{m}\phi$.

Take $\phi_q = \exp(-\pi(x-q)^2)$ and estimate the integral

$$\mathsf{G}b(\lambda) = \langle b | \mathbf{e}_{\lambda} \rangle = \int \phi(x) b(x) \exp(-2\pi i \langle x, p \rangle) \mathrm{d}x$$

By partial integration:

$$\mathsf{G}b(\lambda) = \frac{1}{\iota |p|^2} \int \langle p, \nabla \rangle (\phi b) \exp(-2\pi \iota \langle x, p \rangle) \mathsf{d}x,$$

since

 $\langle p, \nabla \rangle \exp(-2\pi i \langle x, p \rangle) = -i |p|^2 \exp(-2\pi i \langle x, p \rangle).$ By the Schwarz inequality and by (5)

$$\begin{split} |\mathsf{G}b(\lambda)| &\leq \frac{|D|^{1/2}}{|p|} \|\nabla(\phi b)\| \\ &\leq |D|^{1/2} \frac{2\omega M(q)}{|p|} (1 + O(\omega^{-2})), \end{split}$$

where $M(q) = \max \mathbf{e}_{(q,0)}\mathbf{m}$ and $|D| = \int_D dx$. Integrate by parts again and apply (6):

$$\begin{aligned} |\mathsf{G}b(\lambda)| &\leq \frac{|D|^{1/2}}{|p|^2} \|\nabla^2(\phi b)\| \\ &\leq |D|^{1/2} \left(\frac{2\omega M(q)}{|p|}\right)^2 (1+O(\omega^{-1})) \end{aligned}$$

and so on. This implies that $|Gb(\lambda)|$ is small for $|p| > 2\omega M(q)$ and decrease as $|p| \to \infty$. We can fulfil the condition $M < \mathbf{n}_0 - \varepsilon$, if we replace ϕ_q by the function $\phi_{\sigma,q} = \exp(-\pi\sigma(x-q)^2)$, which is better localized at the point q, if $\sigma > 1$. This is equivalent to rescaling Euclidean product in E, which causes dual rescaling in E' and does not change the Liouville volume. By Sect. 3 we can write

$$b = b_1 + b_2 \doteq \int_{\Omega'} \mathsf{G}b(\lambda) \mathbf{e}_{\lambda} \mathrm{d}\lambda + \int_{\Phi \setminus \Omega'} \mathsf{G}b(\lambda) \mathbf{e}_{\lambda} \mathrm{d}\lambda$$

where $\Omega' = \Omega(\mathbf{n}_0 - \varepsilon; \omega)$. The norm $||b_2||$ is small, since of the aforesaid. Apply the localization operator of the complementary domain $\Psi = \Phi \setminus \Omega$, $\Omega = \Omega(\mathbf{n}_0; \omega)$:

$$L(\Psi)b = L(\Psi)b_1 + L(\Psi)b_2$$

The second term has small norm since $||L(\Psi)|| \le 1$. By (1) the first term is also small, since the domains Ω' and Ψ are disjoint and the distance is positive and growing with ω . Therefore $||L(\Psi)b|| \le 1/2$ and

$$\|L(\Omega)b\| = \|b - L(\Psi)b\| \\ \ge \|b\| - \|L(\Psi)b\| \ge 1/2,$$

which implies $b \in \Sigma(\Omega)$, Q.E.D.

Proof of Theorem. Let B be the linear span of bound states; the bound states form an orthogonal basis. By the Lemma B $\subset \Sigma(\Omega(\mathbf{n}_0, \omega))$. Compare the dimensions. By Corollary of Sect. 9 we have

dim
$$\Sigma(\Omega(\mathbf{n}_0,\omega)) = N(\omega) \sim b_{\mathsf{E}}(2\omega)^d \int \mathbf{n}_0^d \mathrm{d}x.$$

since the volume of According to the spectral theory the dimension of B has the asymptotic evaluation

dim B =
$$(1 + o(1))b_{\mathsf{E}}(2\omega)^d \int \mathbf{m}^d dx$$

as $\omega \to \infty$. (Birman-Solomyak, 1970) and the theorem follows. \blacktriangleright

Conclusion. For any smooth $\mathbf{m} < \mathbf{n}_0$ a stable reconstruction of the refraction coefficient \mathbf{n} is possible in the form

$$\boldsymbol{\delta} \equiv \mathbf{n} - \mathbf{n}_0 = \sum_{1}^{\beta} c_i \mathbf{b}_i, \ \beta \doteq \dim \mathbf{B}.$$

where $\mathbf{b}_1, ..., \mathbf{b}_\beta$ are all bound states for the operator $\mathbf{S} = -\Delta - 4\omega^2 \mathbf{m}^2$ and the coefficients $c_1, ..., c_\beta$ are uniquely defined.

The number β is the maximal dimension up to a factor $(1 - \varepsilon)$ of manifolds, where a stable reconstruction of δ is possible.

Hint: If you have already an approximation $\tilde{\delta}$ to δ , filter it by projecting to B !

Some references

Birman M.S., Solomyak M.Z. (1970): *The principal term of the spectral asymptotics of 'smooth' elliptic problems*. Functional Anal. Appl. 4 , 265-275

Grinberg N. (1993): On an uncertainty principle for a scattering transform. Nonlinearity 6 Landau H.J., Pollak H.O. (1961-2): Prolate spheroidal wave functions. Fourier analysis and

uncertainity II, III. Bell System Tech.J., 40, 41

Leontovich M.A., Fock V.A. (1946): Solution of the problem of propagation of electromagnetic wave along the earth's surface by the method of parabolic equation. J.Phys. USSR 10

Nachman A.I. (1988): *Reconstruction from boundary measurements*. Ann. of Math. 128

Natterer F., Wuebbeling F. (1995): *Propagation-backpropagation method*. Inverse problems 11

Novikov R. (1988): *Multidimensional inverse spectral problem for the equation...*, Funct. Anal. and Appl., 22

Sylvester J., Uhlmann G. (1987): A global uniqueness theorem for an inverse boundary

value problem. Ann. of Math. 125 Palamodov V.P. (2003): Stability in diffraction tomography and a nonlinear "basic theorem". Journal d'Analyse Mathematique.

Palamodov V.P. (2005): *Relaxed Gabor expansion at critical density and a 'certainty principle'*. arxiv.org/math.FA/0508071