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1. Introduction
D - domain in an Euclidean space E?,

n(x) - the refraction coefficient (= inverse

velocity) in D,

The acoustic (Helmholtz) equation:
(A+w?n?)u=0

Main problem: to evaluaten from boundary
measurements of solutions u for a fixed time
frequencyw.

Exanpl e: Scattering of a plane wave in
a homogeneous background n :

u=um+ use,

u" = exp(2r1k(0,x)), k = wno,is an incident
planewave,

usc Is the scattered wave on a
Inhomogeneity 6 = n —ny .
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2. Analysis of scattering for small
perturbation of velocity

Scales of perturbation:

Born perturbation: (validity of Born and Rytov
approximations). I |6|ds — O(%);
4

small perturbation:
0 = 0(Np).

The last condition is much weaker, since it does not
depend on frequency @.



Constant background velocity:

Set k = wng and find a small perturbation
f = 26N, from the equation

Au+k?(1+fu=0
Take u(8;x) = exp(Ik[{(0,X) +w]).

Neglecting the term k?|Vw|?, we obtain
AW — 2k(6,Vw) = —kf.

Fourier transform f(g) can be reconstructed
In the ball (Ewald ball)

B = {& € E',[¢| < 2k}

from the knowledge of the fields u(6; x) for
all unit vectors 6 and all points xin oD c E.

3. Gabor transform

Phase space ® = E x E' of the configuration
space E.

Liouville volume density dA = dg A dp is
canonically defined in ®.

ql, ...,qd, P1,...,Pd are dual coordinates in O.

Gabor’s "elementary signal’= coherent state Iin
E:



e (X) = 29 exp(—n(X — Q)2 + 27IpX),
A =(q,p) € ExE'

The Gabor function e, concentrates

("supported”) near g, whereas its Fourier
transform &, concentrates near p € E/,
since

é, = e;, where 1 = (q,p), 4 = (p.—q).

Portrait of a 2D Gabor function:

The Gabor functions are "asymptotically”
orthogonal:



(ele)] = exp(~Z - ul?).

For a bounded function f the function
Gf(1) = (fle,), L € @

Is called Gabor transform of f (windowed
Fourier transform).

The Gabor transform is a isometry
Lz(E) - Lz((D)I

117 = | Kflex)Pd2.

Reconstructiorof a function f € L, from its
Gabor transform:

f(x) = [(flex)es(0da.

4. Unstable reconstruction of high
frequencies
Spacecase: d = 3

Constant background, Born perturbation 8. The
scattering amplitude is :

a(9;x) ~ ag(0;x) = k? I d(Y) exp(2r1k(f — X,y))dy,

where ag is the Born approximation,
X = =2 K= whgoand we use the notation

x|’



A = Z( ) in the acoustic equation.

Take

8 = ecog2r(p,x)) exp(—m(X—q)?),
for some A = (g,p),q € D and some small ¢
(a constant factor is omitted). WWe have

ap(0;X) = ek?[e,, (17) + €4, ()],
where n = k(6 —X) € By and
H1 = (p,—Q),,Uz — (p1q)
Both terms e, (), e,,(n) are exponentially

small as k - oo, If |p|//2k > 1 + ¢, since
In — p| > <k for arbitrary directions 0, X.

The true amplitude ais also exponentially
small.

Concl usi on: Stable reconstruction a
perturbationd = n — ng Is impossible, ifitis
concentrated in the complement to the ball B
R > (2+ ¢)k for big k since it generates only
evanescent waves

Theor em The same is true for any smooth
backgroundno, k = wno(Q),

that is stable reconstruction of the Gabor
transform of & is impossible in the exterior of
the tube-like domain



Q(No, @) = {|p| = 20n(Q) }

frequency space X
&

Case of constant background: Q2(No,®) = D x Ba.

Uni queness resul ts: LFaddeev,
A.Calderon, Sylvester-Uhimann, R.Novikov,



Nachman, Eskin-Ralston, Sjoestrand,...

Information on perturbation is extracted from evanescent
waves. To amplify this information non-physical solutions
like

V(X) = exp2r(1EX+ X)), &,n € C,E2 —n? = Kk?

are coupled with evanescent solutions. The reconstruction
IS exponentially unstable.

5. Scattering on a line

Cased = 1. Write the wave equation in the
form

[(%)2 +w2n2}(u‘” +us®) =0

where k = wng, ho be a constant reference
coefficient, n fulfils the only condition:
Nn(X) - ng as [X| - .

The backscattered wave defines the
reflectioncoefficient

usc/u™ - r(k) as x - —oo.
Theorem IfV = Varglogn/n, < oo, then
r(k) oV H r(k)

< 2sinkf | BT

Lo

L2
where
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5(t) = J exp(—2ritt)o(X(t))dt, 6 = n r:nnoo

andt = t(x) = j);n(y)dy is the travel time
variable

Moreover for anyw > Othe functionﬁ(r) can
be estimated in the intervih2mw, 20] In terms
of the reflection r coefficient in the interval
[k, K].

N.Grinberg, (1993), B.Levitan’s method.

Features of the reconstruction:

* No smallness assumption on the
perturbationd.

 Discontinuous functions are allowed
Estimate the Gabor transform of §(x):

Gv(1) = Iexp(—n(x — )% + 271(px— tt(x)) ) dx

X j@(r)dr.

The point x = g,p = tt'(X) = tn(q) gives the
main contribution. If |p| < 2on(q), then

Ir] < 20w and v(7) is determined from the
data of the reflection coefficient r for
frequency kK, K| < 2ono.

Concl usi on. If we know (k) for
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K| < ono, the Gabor transform ob is stably
reconstructed in the tubeomain

Q(n;w) = {(q,p) : |p| = 20n(q)}.
that looks like

P

Domain of stable reconstruction in 1D

Note that the complementary set to the
Instability domain as in Sect. 4.

6. Spacial case

Evaluate the difference 6 = n — ng in terms
of boundary measurements of solutions u of
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the equation with unknown coefficient n
(A+w’°n?)u=20

and solutions ug of a reference equation
(A + a)zng)Uo =0

2
where we denote A = Z( 27r88X- ) :

Theor em Suppose thatds)? and (nds)*?

are smooth non trapping metrics in a bounded
domain Dc E% d > 3.

Let g € D and {; = dx/dz be the tangent vector
at g to a geodesic curveof the metrian (7 is the
time parameter), tg is the tangent vector to a
geodesic curve, of ng. Then

IG8(1)| < Cor™? sup“ (UOyUo — U0, u)dS
U,z oD

+o’r(Aw), (2)

whered = (q,p = otq + otd) andu,u, are
Gauss beam solutions of the corresponding
metrics

The constant C and the factof#; w) are
uniformly bounded for ¢ D,» > wo and
tq x t§] = € > 0.

The statement is also true for the case @, If
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y andyo have no other common point

The estimate (2) holds for any point (g,p) in
the domain Q(n,ny; ), defined by

qe D, (1+¢)oln(@) -no(@)| = Ip| = (1-&)o(n(q)-
with uniformly bounded C and r.

Concl usi on. Stable reconstruction of

Gabor transform of the perturbatiohis
possible iN(n, ny; w),.

This domain is close to the set 2(n, ng;w),:

A
X *

n+n,_

S 1
L~ U
|
In-n, |
*
N

' D e X

Perturbative case:
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Cor ol | ary. Any small perturbation
d = N — ng can be stably reconstructed in the
domain

qe D, we < p] < o(2no(q) - ¢),
If & > [6].
This domain is close to the tube domain
Q(ng;®) = {g € D, |p| < 2wno(q) . See
again picture in Sect. 4.

7. Gauss -beam solutions
The caseal = 2.

Theor em If the metric(nds)2in D < E® s

smooth and non trappinghere exists a
frequencywo such that for an arbitrary geodesic
curvey of the metric and any > wg there

exists a solution 1, of the acoustic equation

(A + w?*n?)u,, = 0in D such that

U, = Uy, +V,, Where

15



U, = (nwj) Y exp2r[iogp — ov +17]),
(S, 1) = js ndo,
S0

w(sr) = %(LL |(Iog%);)r2,

S
_ do
x(S) L2

] Is the divergencéspread functioh s is the
natural coordinate along the curve

y = {r = 0}, r is the Euclidean coordinate in
the normal direction ang_|v.|*dx = O(o™).

The principal term U, was found by
Leontovich and Fock (1944-6). It has the
gaussian profile

exp(—-oy) = exp(—nwjﬂrz)

In the normal cross-section. A Gauss beam
solution u, Is essentially supported in a
O(LY?)-nbd of a geodesic vy, where

L = (wn)tis the wave length:
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8. Sketch of the proof

Green formula for the Gauss beam
solutions

J (u&vuo—uoévu)d8=a)zj duugdx
oD D

The product uug is like

17



1.4

1.3+

1.2

11

0.8

0.7

0.6

0.9

gammasx

0.5

15

2.5 3 3.5

which gives evaluation of the integral of the
product like

exp(—n(r®+r3))exp21(¢ + ¢o))d
localized near the point g € D, where ¢ and
@o are respective Eikonal functions. This
Integral is close to the Gabor transform of 6
at A = (q,p = tq +t3) in the phase space. »

9. Phase space and information
Question :
how much information can we get out from the
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data of GO(1),A € Q(n;w) < © ?
General problem

how large is dimension of the "space” 2(Q)) of
functions in E, whose Gabor transform is
"supported” in a bounded domain Q < © ?

The physical wisdom

a field (signal imagg concentrated in a large
bounded domai® of the phase space has about

Vol Q = IQ dA

Independent degrees of freed@mNyquist,
Wigner, Brillouin, Gabor,...).

A rigorous mathematical theory confirms
this guess:

The casal = 1, Qis a box: Landau, Pollak
(1961-2)

The general casethe operator
L©Q)f = | (fles)esda
Q

In L2(E) is called localization operator for the
domain Q. It is self-adjoint and has discrete
spectrum in (0, 1].

Definition . Let N(Q2) be the number of
eigenvalues of the operator L(Q2) in the interval
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[1/2,1] and Z(Q) be the subspace in L,(E)
spanned by the corresponding eigenfunctions.

Theorem [P.2005] The number KQ) is
estimated as follows
IN(Q2) — Vol (QQ)| < CVol (0Q2)), (3)

where |= blog¥?(diam Q) + ¢ and hc are
some constants and Gneansdineighborhood
of G.

In particular, we have
VolQ(n,ng; ) = bEde ((n+ng)?—1|n —no|?)dx.
D

If the perturbation 6 = n — ng is small, this
volume is close to the integral

Vol Q(n0;20) ~ be(20)® | ngdx. (4

where DE means the volume of the unit ball in E.

Cor ol | ary. The number

N(w) = N(Q2(no; 2w)) has the same asymptotic
expansion(4).

Proofis not straightforward, since Vol (0Q2,),
Q = Q(no;2w) has the same order ~ Cw? of

growth as the volume Vol (Q2) for big o and
constant p, since this domain is stretched In
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E' directions. The rescaling transformation
q = 0¥?q,p' = o ?pin @ is simplectic and
does not change the Liouville volume,
whereas it changes the distance functions
in E and in E' and the form of a ball in ®.
We now have Vol (6Q2)) = O(w¥?logw) and

(3) yields N(w) ~ Vol (Q), Q.E.D.

| nt er pretati on: the quantity

Vol Q(no; 20) is equal to the volume of D
measured by means of the variable length unity
M2 = (2ono(x)) .

10. What can we benefit from this

knowledge ?

An answer : Try to find out a reasonable basis
in 2(Q(no; @)).

Take a small € > 0 and a smooth function m
such thatng—3s <m < ng-2¢ and
consider the Schrodinger operator

S = -A-4w’m?

In D with zero Dirichlet conditions on oD. It
IS self-adjoint and has discrete spectrum.

A bound state of this operator is an
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eigenfunction b with non-positive
eigenvalue 1 = A(b) < 0.

There are only finite number of bound
states, since Sis bounded from below:
(50|g) > —C{(g|g) for some C.

Theor em The set of bound stateb; ) of S

IS a orthogonal basis in a subspace
B < Z(Q(n,)) such that

dimB 3c ¢
dimZ(flzr?no,a))) Z( _n_i) - o(d)

aSw — 0.

Lemmma. Any bound state of the operator S is
contained iNX(Q(No,®)).

Proof. Take a bound state b, ||b|| = 1; let
A < 0 be its eigenvalue. The equation

— Ab = (40°m? + )b
yields the estimate
[Vb[I* = ((40°m? + 1)blb)
< 40?|mb|?,

where V = 0/2z0ox. For an arbitrary real
smooth function ¢ > 0
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[V(¢b)I? = (40®m? + 2)|¢b]?
+ [V(®)bl?,

which yields

IV(¢b) |* < 4w?||m¢b]|* + [V($)b] *.
The last term is bounded by
M1(¢) = maxV(¢)|, which results in

IV(¢b) || < 2w[m¢b]| + O(w™). (5)
Similar estimate for higher derivatives are

IV2(gb) || < (2w)?Im¢b|l + O(w), (6)

[V3(¢b) || < (2w)*[Imgb| + O(w?),

where the remainder O(w?) depends on
maxVm|, and so on.

The estimates for the product ¢b looks like
bounds for a bandlimited function of the
width 2oM, where

M = maxme.

Take ¢q = exp(—z(x—q)*) and estimate
the integral

Gb(4) = (bles) = [ #EOb(X) exp(-271(x, p))dx

By partial integration:
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Gb(1) =

since

(p, Vyexp(-27i(x, p)) = —I|p|* exp(=27K(x, p)).
By the Schwarz inequality and by (5)
1/2
Gbe)| < L= Vi) |

< 2222 1+ 0 2),

where M(q) = maxegom and [D| = [ dx.
Integrate by parts again and apply (6):

1/2
Gb(A)| < 'D' [V2(pb) |

2

< |D|1/2( zw:\éll(q) ] (1_|_ O(a)‘l))
and so on. This implies that |Gb(1)| is small
for |p| > 20M(q) and decrease as [p| - «.
We can fulfil the condition M < ng — ¢, if we
replace ¢4 by the function

doq = exp(—wo(x—q)?), which is better
localized at the point g, if o > 1. This is
equivalent to rescaling Euclidean product in
E, which causes dual rescaling in E' and
does not change the Liouville volume.
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By Sect. 3 we can write
b=bi+b, = | Gb(A)e,di+|  Gh(i)e;da
Q/

O\Q'
where Q' = Q(ng —¢;w). The norm ||b2| is
small, since of the aforesaid. Apply the

localization operator of the complementary
domain ¥ = ®\Q, Q = Q(no; o) :

L(¥)b = L(¥)b; + L(¥)b,

The second term has small norm since
IL(W)| < 1.By (1) the first term is also
small, since the domains Q' and ¥ are
disjoint and the distance is positive and
growing with o. Therefore ||[L(W)b| < 1/2
and

IL(€2)b]| = [[b—L(¥)bl|
> [Ib]] = [IL(¥)b]l = 172,
which implies b € Z(Q), Q.E.D.

Proof of Theorem. Let B be the linear span of
bound states; the bound states form an
orthogonal basis. By the Lemma B
2(Q(no,w)). Compare the dimensions. By
Corollary of Sect. 9 we have

dim Z(Q(no,)) = N(@) ~ bE(zw)djngdx.
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since the volume of According to the
spectral theory the dimension of B has the
asymptotic evaluation

dim B = (1+0(1))be(20)" | mddx
as o — oo. (Birman-Solomyak, 1970) and
the theorem follows. »

Concl usi on. For any smoothm < ng a

stable reconstruction of the refraction
coefficientn is possible in the form

p
§=n-no= Y cbj, g=dmB.
1

whereb,...,b 3 are all bound states for the
operatorS = —A — 4w?m? and the coefficients
Ci,...,Cg are uniquely defined

The number g is the maximal dimension up
to a factor (1 - ¢) of manifolds, where a
stable reconstruction of d is possible.

H nt: If you have already an approximation
o to o, filter it by projecting toB !
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