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Kaczmarz! method

� 

Solve R
s
( f ) = g

s
 for all sources s.

Update:

f % & & f $'(R
s
(( f )))(R

s
( f )$ g

s
)



What can we expect from reflection data?
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Numerical experiments
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Kaczmarz does exactly what you can possibly expect!



Plane wave stacking
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What can we expect from plane waves?

If the source wavelet q has frequencies down to 0, f can be 

recovered from 2 plane waves making an angle of 90°.



Marmousi with Kaczmarz and plane wave stacking

Works only for delta-like source wavelets q!



Combining reflection with transmission

Combining 1, 2, 4 waves



Ultrasound mamography



original reconstruction

Computing time <1 minute on a 3Ghz double processor PC

Kaczmarz with plane wave stacking in medical imaging



Kaczmarz in frequency domain
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Initial Value Problem for the Helmholtz Equation
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Stability Estimates for the Cauchy Problem
of the Inhomogeneous Helmholtz Equation
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Stable marching for the Helmholtz equation
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Exact (finite 
difference time
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by Fourier
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Initial value
technique
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Vertical cross section

through real part

green: exact

red: initial value technique

focal point



What can we do for „real“ source wavelets q?

Make use of reflectors!
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Theory of CARI
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Low frequency terms are involved, too!



Numerical experiments with CARI
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Unknown reflectors
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We do not distinguish between background and reflectors! 



Numerical experiment
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Numerical experiment

� 

original

� 

reconstruction

 
Data band-pass filtered to 2.5-5 Hz



Why do we need low frequencies?



(Highly) necessary condition for convergence
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Necessary conditions for lens

� 

             f (x)ds3 = 0.74 km

At 5 Hz:           ? = 0.4 km    no convergence

At 2.5 Hz:        ? = 0.8 km       convergence



Conclusions
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Least squares (Kaczmarz) achieves what you can reasonably expect

Start with sufficiently low frequencies

Use frequency domain initial value techniques


