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The model problem
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Kaczmarz' method

Solve R (f) = g, for all sources s.

Update:

fe—f—a(R () R()-g)



What can we expect from reflection data?

#(p+0,~a(p)—a(c)) determined

pllol<k, a(p)=+k*—p°.
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c, =2km/sec

Numerical experiments lowest frequency f = SHz

depth 6km, T =6sec

original reconstruction

f

f(x,,x,)= Cos(27r5x2 /c,)

Kaczmarz does exactly what you can possibly expect!



Plane wave stacking

9 gtyp(x-s) i

o, o= D gt —sin(a)s/ c,) p(x —s)

S

(R, (N0 = D (R(F))(x,.t —sin(@)s/ c,)



What can we expect from plane waves?

If the source wavelet g has frequencies down to O, f can be

recovered from 2 plane waves making an angle of 90°.



Marmousi with Kaczmarz and plane wave stacking

N marm

Works only for delta-like source wavelets q!



Combining reflection with transmission

&2 &2

Combining 1, 2, 4 waves
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Ultrasound mamography




Kaczmarz with plane wave stacking in medical imaging

original reconstruction

Computing time <1 minute on a 3Ghz double processor PC



Kaczmarz in frequency domain

AU+k*(1+ U =0,x,<0, k=w/c,

§U<x1 0)= G@)p(x—s)
x2

U(x,,0) =g (x,,0)

U radiation condition for [x| — oo

U

(R (f)(x)= Y ikU =0 on |x| =r, r large.
r

Solve IQS( f) =0 for all sources.

X2

One-way or two-way
wave equation?

X1



Initial Value Problem for the Helmholtz Equation

2 2 a
SV U L u=0  U.0)=Uy(x), 2 (x,0)=U,(x,)
ox;  Ox, X,
Fourier transform with respect to x;: Cauchy data .
A _ _ | > 1
U ,x,)=2r) 1/2f exp(—ix,&)U (x,,x,)dx, l
Ordinary differential equation in x,: X,
d°U(&, ,x, N

5512 ) ~ 512)U(§1’x2) =0

Solution:
& 5= Uy(E)eostx @) + L sinte& ), k(&) =K =&

k(&)

Stable as long as & < k*



Stability Estimates for the Cauchy Problem
of the Inhomogeneous Helmholtz Equation

AU+KA+ HU=r, x,>0, f21+m, m >-1

du(x,,0) _

0,
ox,

U(x,,0)=0,

U. = low pass filtered (in x") version with cut - off k of U

C(’;)r k=k(l+m,), 0<V<1

HUmS‘(xl ’xz)Hﬁ (RY = K

L*(R'[0.x,])°



Stable marching for the Helmholtz equatior

Compute a preliminary value U/ ;-1 from
—4Ul,j +U" 1 j41 +Ul,j_1 + Um,j + Ul_l’j + h2k2(1 + fl]) =0

Compute U, ;,, by low pass filtering of U "1 jsWith respect to [

"+

U

l,j+1

\ 4 .
X55]

n”log(n) flops on n xn grid!



Exact (finite
difference time
domain, followed
by Fourier
transform)

LUNEBERG
LENSE

Initial value
technique




Vertical cross section

through real part

green: exact

red: initial value technique
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What can we do for ,real” source wavelets q?

Make use of reflectors!

82u ) Transducer
? =C Au, x2 > O, Ultrasound
t
au Chest wall
—— = q(t)p(x - S), X, = 0 Plexiglas Plate /
ox,
ou Gel filling [
— O, x2 — D Breast
0x,

Metallic Reflector

CARI



Theory of CARI

One can show that

N X -
XYf(p+o,a(p)+a(o))+ Yf (p+o,a(p)—a(o))+

Y . 1 -
Xf(p +0,—a(p)+a(o))+ XYf(p +0,—a(p)—a(0))

9

is uniquely determined for |p|, [o| < k.

p

a(p)=~k*—p*, X =exp(ia(p)D), Y =exp(ia(c)D)

Low frequency terms are involved, too!



Numerical experiments with CARI

N\ lens

N\ lens4.2

\ Ccross-section

j05
an

) I [ N N N S A A —

c(x,,x,) = ¢, —aexp(—(x* +(x, —0.5)*)/0.09), a = 0.4, ¢, = 2km / sec



Unknown reflectors

J) = fo(x)+ f,(x)

N

smooth background reflectors

(unknown) (unknown)

We do not distinguish between background and reflectors!



Numerical experiment

c, —aexp(—(x] +(x, —0.5)*)/0.09), a =0.8km /sec, c, = 2km /sec

2.5km /sec in two horizontal strips

c(x,,x,) = {

Gy common shot gather

I+ f Ricker wavelet

peak frequency at 18 Hz



Numerical experiment

3 N\ lens2 O O X lens2_200

original reconstruction

\. cross-section

Data band-pass filtered to 2.5-5 Hz



Why do we need low frequencies?



(Highly) necessary condition for convergence

Initial approximation f,, corresponding field U,: AU, +k*(1+ f£,)U, =0

True f, true field U: AU+ k*(1+ £ U ==k*(f - f,))U
Linearization: AU+ k*(+ U =-k*(f - f,)U,
Valid only if at least | phase(U') —phase(U,) Kk
WKB: U = erxp{i; for- fo)ds}

Jor=poas<=F =2



Necessary conditions for lens

[ £(x)ds =074 km

At 5 Hz: A=0.4km no convergence

At 2.5 Hz: A=0.8km  convergence



Conclusions

Least squares (Kaczmarz) achieves what you can reasonably expect
Start with sufficiently low frequencies

Use frequency domain initial value techniques



