Least Squares Inversion Revisited

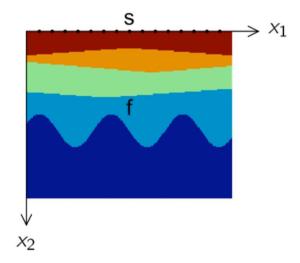
Frank Natterer Department of Mathematics University of Münster Germany nattere@math.uni-muenster.de

The model problem

$$\frac{\partial^2 u}{\partial t^2} = c^2 \Delta u, x_2 > 0, \ 0 \le t \le T, \ u = 0 \ (t < 0)$$

$$\frac{\partial u}{\partial x_2}(x_1, 0) = q(t)p(x_1 - s), \qquad c^2 = \frac{c_0^2}{1 + f}$$

$$g_s(x_1, t) = u(x_1, 0, t) = (R_s(f))(x_1, t) \text{ seismogram for source } s$$



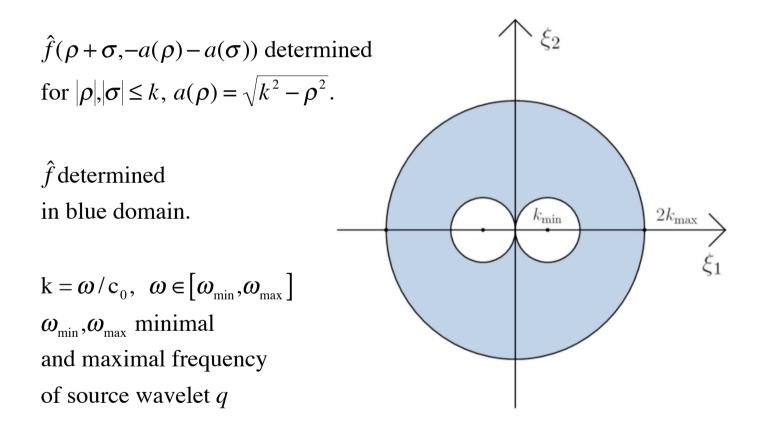
Kaczmarz' method

Solve $R_s(f) = g_s$ for all sources *s*.

Update:

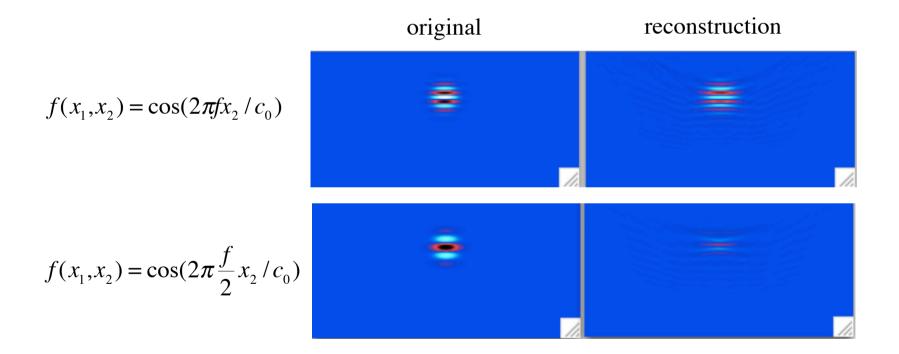
 $f \longleftarrow f - \alpha (R_s'(f))^* (R_s(f) - g_s)$

What can we expect from reflection data?



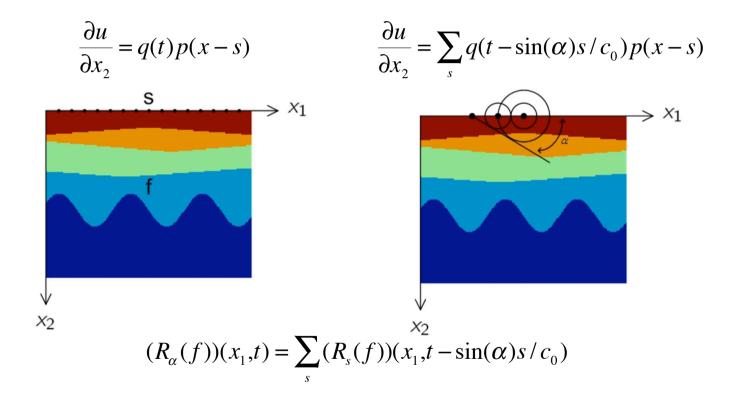
Numerical experiments

 $c_0 = 2km/\sec$ lowest frequency f = 5Hzdepth 6km, $T = 6\sec$

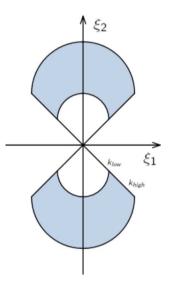


Kaczmarz does exactly what you can possibly expect!

Plane wave stacking

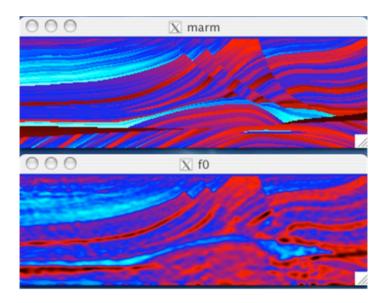


What can we expect from plane waves?



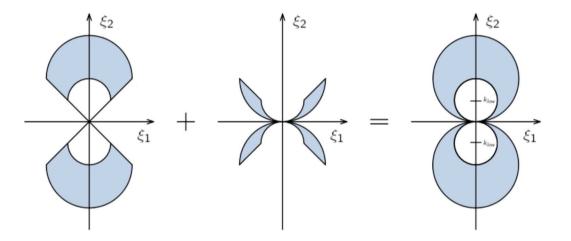
If the source wavelet q has frequencies down to 0, f can be recovered from 2 plane waves making an angle of 90°.

Marmousi with Kaczmarz and plane wave stacking

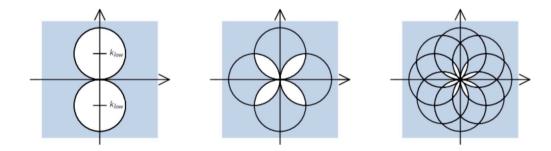


Works only for delta-like source wavelets q!

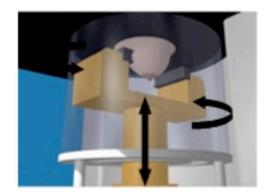
Combining reflection with transmission

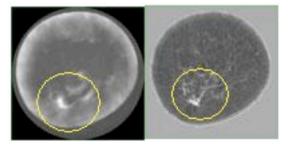


Combining 1, 2, 4 waves

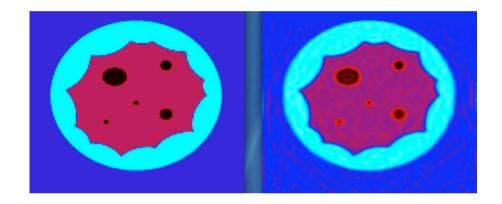


Ultrasound mamography





Kaczmarz with plane wave stacking in medical imaging



original reconstruction

Computing time <1 minute on a 3Ghz double processor PC

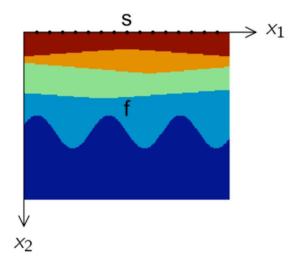
Kaczmarz in frequency domain

 $\Delta U + k^2 (1+f)U = 0, x_2 < 0, k = \omega / c_0$

$$\frac{\partial U}{\partial x_2}(x_1,0) = \hat{q}(\omega)p(x-s)$$
$$U(x_1,0) = \hat{g}_s(x_1,\omega)$$

U radiation condition for $|\mathbf{x}| \rightarrow \infty$:

$$(\hat{R}_{s}(f))(x) = \frac{\partial U}{\partial r} - ikU = 0 \text{ on } |x| = r, r \text{ large.}$$

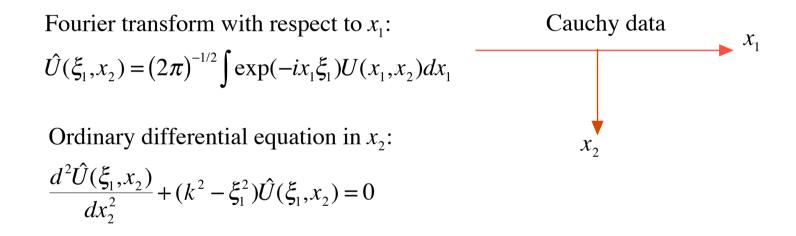


One-way or two-way wave equation?

Solve $\hat{R}_s(f) = 0$ for all sources.

Initial Value Problem for the Helmholtz Equation

$$\frac{\partial^2 U}{\partial x_1^2} + \frac{\partial^2 U}{\partial x_2^2} + k^2 u = 0 \qquad U(x_1, 0) = U_0(x_1), \ \frac{\partial U}{\partial x_2}(x_1, 0) = U_1(x_1)$$



Solution:

$$\hat{U}(\xi_1, x_2) = \hat{U}_0(\xi_1) \cos(\kappa(\xi_1) x_2) + \frac{\hat{U}_1(\xi_1)}{\kappa(\xi_1)} \sin(\kappa(\xi_1) x_2), \ \kappa(\xi_1) = \sqrt{k^2 - \xi_1^2}$$

Stable as long as $\xi_1^2 \le k^2$

Stability Estimates for the Cauchy Problem of the Inhomogeneous Helmholtz Equation

$$\Delta U + k^2 (1+f)U = r, \quad x_2 > 0, \quad f \ge 1 + m_1, \ m_1 > -1$$

$$U(x_1,0) = 0, \quad \frac{\partial u(x_1,0)}{\partial x_2} = 0,$$

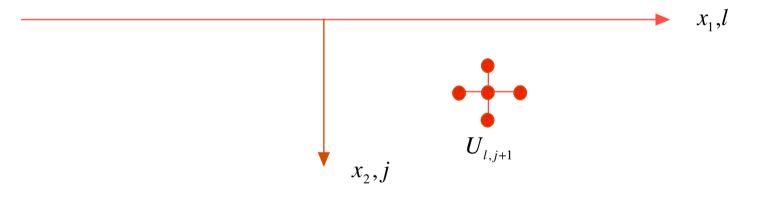
 U_{κ} = low pass filtered (in x') version with cut - off κ of U

$$\left\|U_{\kappa\vartheta}(x_{1},x_{2})\right\|_{L^{2}(R^{1})} \leq \frac{c(x_{2})}{\kappa\vartheta} \|r\|_{L^{2}(R^{1}\times[0,x_{1}])}, \quad \kappa = k(1+m_{1}), \quad 0 < \vartheta < 1$$

Stable marching for the Helmholtz equation

Compute a preliminary value $U^*_{l,j+1}$ from $-4U_{l,j} + U^*_{l,j+1} + U_{l,j-1} + U_{l+1,j} + U_{l-1,j} + h^2 k^2 (1 + f_{l,j}) = 0$

Compute $U_{l,i+1}$ by low pass filtering of $U^*_{l,i+1}$ with respect to l

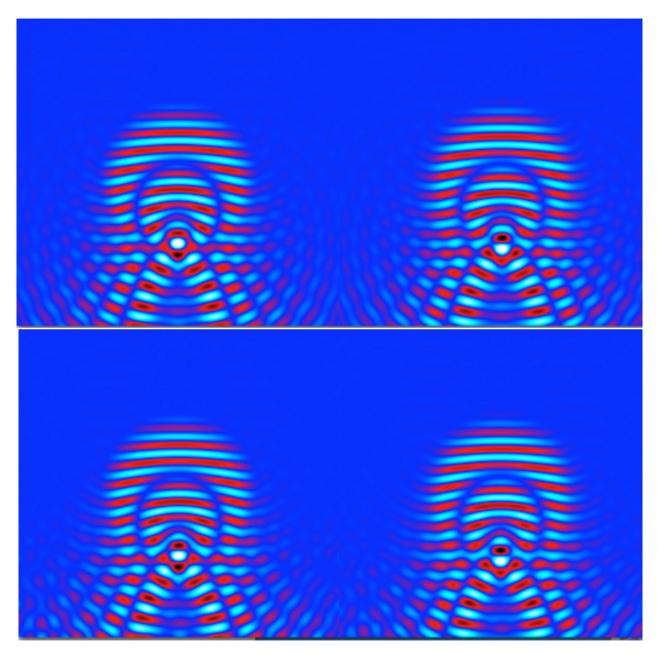


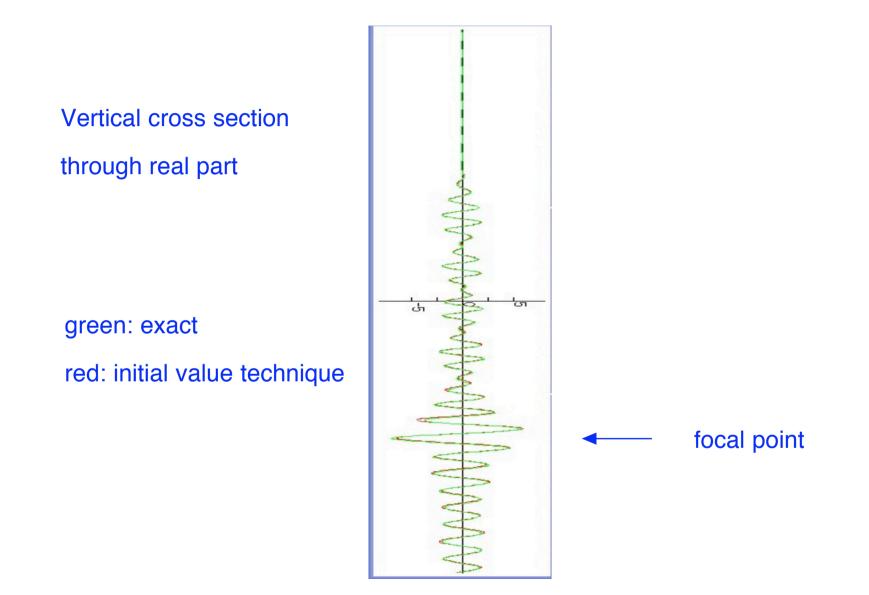
 $n^2 \log(n)$ flops on n×n grid!

Exact (finite difference time domain, followed by Fourier transform)

LUNEBERG LENSE

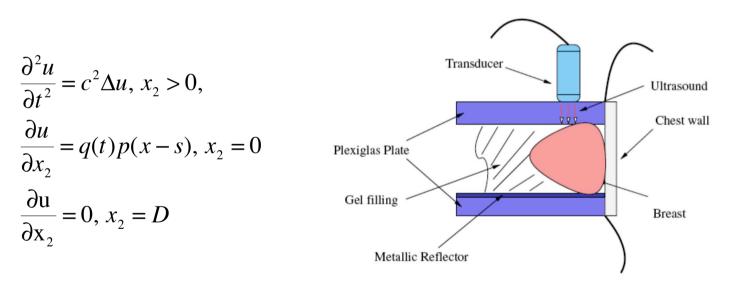
Initial value technique





What can we do for "real" source wavelets q?

Make use of reflectors!



CARI

Theory of CARI

One can show that

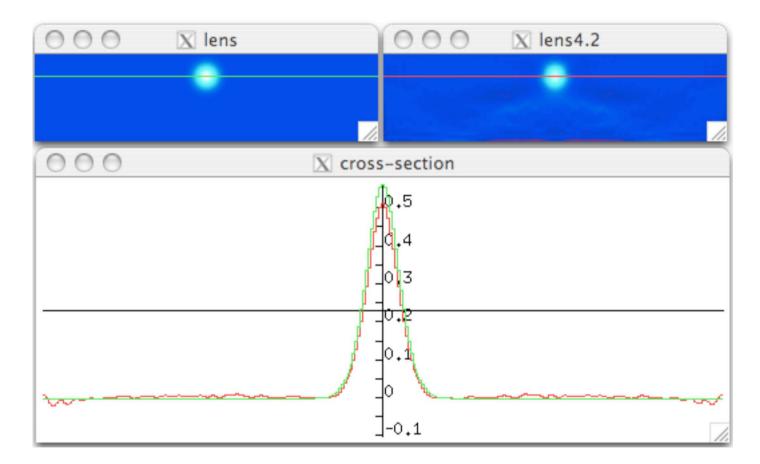
$$\begin{split} XY &\hat{f}(\rho + \sigma, a(\rho) + a(\sigma)) + \frac{X}{Y} \hat{f}(\rho + \sigma, a(\rho) - a(\sigma)) + \\ &\frac{Y}{X} \hat{f}(\rho + \sigma, -a(\rho) + a(\sigma)) + \frac{1}{XY} \hat{f}(\rho + \sigma, -a(\rho) - a(\sigma)) \end{split}$$

is uniquely determined for $|\rho|$, $|\sigma| \le k$.

$$a(\rho) = \sqrt{k^2 - \rho^2}, X = \exp(ia(\rho)D), Y = \exp(ia(\sigma)D)$$

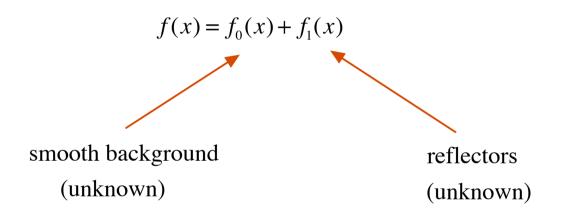
Low frequency terms are involved, too!

Numerical experiments with CARI



 $c(x_1, x_2) = c_0 - a \exp(-(x_1^2 + (x_2 - 0.5)^2)/0.09), a = 0.4, c_0 = 2km/sec$

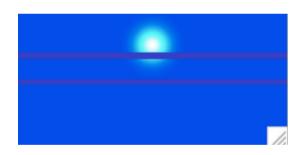
Unknown reflectors



We do not distinguish between background and reflectors!

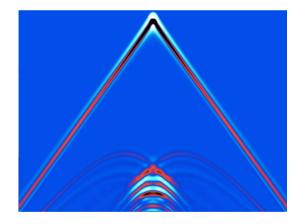
Numerical experiment

 $c(x_1, x_2) = \begin{cases} c_0 - a \exp(-(x_1^2 + (x_2 - 0.5)^2)/0.09), \ a = 0.8 km/sec, \ c_0 = 2km/sec \\ 2.5 km/sec \text{ in two horizontal strips} \end{cases}$



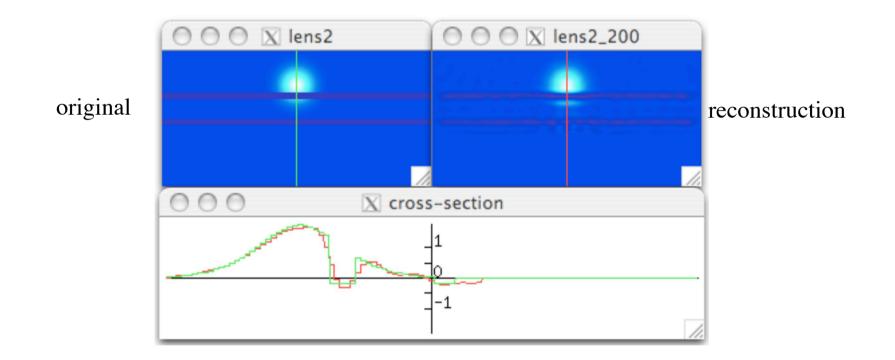
$$f$$

$$c^2 = \frac{c_0^2}{1+f}$$



common shot gather Ricker wavelet peak frequency at 18 Hz

Numerical experiment



Data band-pass filtered to 2.5-5 Hz

Why do we need low frequencies?

(Highly) necessary condition for convergence

Initial approximation f_0 , corresponding field U_0 : $\Delta U_0 + k^2(1+f_0)U_0 = 0$

True f, true field U: $\Delta U + k^2 (1 + f_0)U = -k^2 (f - f_0)U$

Linearization:

$$\Delta U + k^2 (1 + f_0)U = -k^2 (f - f_0)U_0$$

Valid only if at least

$$| \text{phase}(U) - \text{phase}(U_0) | < \pi$$

WKB: $U \approx U_0 \exp\left\{\frac{\mathrm{i}k}{2}\int (f - f_0)ds\right\}$

$$\left|\int (f-f_0)ds\right| < \frac{2\pi}{k} = \lambda$$

Necessary conditions for lens

$$\int f(x)ds = 0.74 \text{ km}$$

At 5 Hz: $\lambda = 0.4$ km μ	no convergence
-----------------------------------	----------------

At 2.5 Hz: $\lambda = 0.8$ km convergence

Conclusions

Least squares (Kaczmarz) achieves what you can reasonably expect

Start with sufficiently low frequencies

Use frequency domain initial value techniques