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What is the problem?

What are we trying to do?

Wavefield extrapolation is costly in the frequency-wavenumber
(ω − ξ) domain in the presence of strong lateral velocity gradients.
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What is the problem?

What are we trying to do?

Wavefield extrapolation is costly in the frequency-wavenumber
(ω − ξ) domain in the presence of strong lateral velocity gradients.

Multiplication in ω − ξ is equivalent to convolution in ω − x.

Truncation of the convolution kernel to improve run-time leads to
an unstable algorithm.

The stabilization process is complicated.

Can we find a simple method?
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Generalized pspi

Infinitesimal extrapolator

Ψ(x, z + ∆z, ω) = Tα(z:z+∆z)Ψ(x, z, ω)
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Generalized pspi

Infinitesimal extrapolator

Ψ(x, z + ∆z, ω) = Tα(z:z+∆z)Ψ(x, z, ω)

≈
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gpspi conceptually

The locally homogeneous symbol
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Wavefield extrapolation: the symbol α
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Convolution equivalent
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Truncation → Gibbs
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Stabilization by reconstruction

Hale’s extrapolator

Dave Hale (1991) expands the symbol α into a modified Taylor
series.
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Hale’s extrapolator
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stable form.

Though effective, it requires significant pen-and-paper analysis to
change operational parameters (eg changing the spatial sampling
of the operator).
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Stabilization by reconstruction

Hale’s extrapolator

Dave Hale (1991) expands the symbol α into a modified Taylor
series.

The symbol is reconstructed from this expansion into an explicitly
stable form.

Though effective, it requires significant pen-and-paper analysis to
change operational parameters (eg changing the spatial sampling
of the operator).

Additionally, it is relatively inaccurate at high-angle propagation.
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Stabilization by Weighted Least Squares

The wlsq extrapolator

Thorbecke et al. (2004) stabilize with a weighted least squares
(wlsq) optimization.
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Stabilization by Weighted Least Squares

The wlsq extrapolator

Thorbecke et al. (2004) stabilize with a weighted least squares
(wlsq) optimization.

This method works well, and is simpler than the Hale method.

However, it still requires an optimization which is somewhat
expensive and complicated.
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Stabilization by foci

The foci extrapolator

Margrave et al. (2006) stabilize by
Forward-Operator-Conjugate-Inverse (foci).
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Stabilization by foci

The foci extrapolator

Margrave et al. (2006) stabilize by
Forward-Operator-Conjugate-Inverse (foci).

A forward operator (unstable) is generated for a half-step.

An inverse operator (unstable) is generated for a half-step.

The forward and inverse have almost exactly mirrored instability.

Compose the forward operator with the conjugate of the inverse to
cancel the instability.

Somewhat complicated to implement correctly.
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The three extrapolators
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The gpspi concept
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A different idea
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A vertical gradient bends rays!

But what kind of gradient?

A positive linear vertical velocity gradient, to keep things simple:
v(x, z) = v0(x) + m(x)(z − z0), z ∈ [z0, z0 + ∆z].
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A vertical gradient bends rays!

But what kind of gradient?

A positive linear vertical velocity gradient, to keep things simple:
v(x, z) = v0(x) + m(x)(z − z0), z ∈ [z0, z0 + ∆z].

Vertical traveltime should match the original medium.

Rays leaving at 90◦ from the output point (x0, z0 + ∆z) should
intersect z = z0 at a specified finite aperture radius xr.
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Example parameters

Medium at vloc = 2000m/s, for xr = 20m over ∆z = 10m

Vertical traveltime match: log
(

1 + m∆z
v0

)

= m∆z
vloc

.
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Example parameters

Medium at vloc = 2000m/s, for xr = 20m over ∆z = 10m

Vertical traveltime match: log
(

1 + m∆z
v0

)

= m∆z
vloc

.

Aperture radius requirement: m = 2v0∆z
x2

r−∆z2

Combining:

v0 = vloc log

(

1 +
2∆z2

x2
r − ∆z2

)

x2
r − ∆z2

2∆z2
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Example parameters

Medium at vloc = 2000m/s, for xr = 20m over ∆z = 10m

v0 = 2000 log
(

1 + 2×102

202−102

)

202−102

2×102 = 1533m/s
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Example parameters

Medium at vloc = 2000m/s, for xr = 20m over ∆z = 10m

v0 = 2000 log
(

1 + 2×102

202−102

)

202−102

2×102 = 1533m/s

m = 2×1533×10
202−102 = 102s−1

v(x0, z) = 1533m/s + (102s−1)(z − z0)

In practice: xr “significantly” bigger than ∆z

Also: xr “significantly” less than the spatial extent of the
convolution kernel

xr/∆z ≈ [kernel extent]/xr
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The lwkbj operator

Developing the lwkbj operator

Decompose our operator into a composition of N operators:

Tα(0:∆z) = T
α((N−1)∆z

N
):∆z) ◦ · · · ◦T

α(∆z

N
:2∆z

N
) ◦T

α(0: ∆z

N
)
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Developing the lwkbj operator

Decompose our operator into a composition of N operators:

Tα(0:∆z) = T
α((N−1)∆z

N
):∆z) ◦ · · · ◦T

α(∆z

N
:2∆z

N
) ◦T

α(0: ∆z

N
)

Use with our definition of v(x, z) to obtain:

α(0 : ∆z) ∼ α

(

0 :
∆z

N

)

α

(

∆z

N
: 2

∆z

N

)

· · ·α

(

(N − 1)
∆z

N
: ∆z

)
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The lwkbj operator

The lwkbj operator

Recalling our previous α we can write this as:

α(x, ξ, ω, 0 : ∆z) ∼ exp



i
∆z

N

N
∑

j=1

√

ω2

v(x, j∆z/N)2
− ξ2





Hogan, Margrave (U of C) lwkbj operators GIW 2006 19 / 32
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The lwkbj operator

Recalling our previous α we can write this as:

α(x, ξ, ω, 0 : ∆z) ∼ exp



i
∆z

N

N
∑

j=1

√

ω2

v(x, j∆z/N)2
− ξ2





Choosing physically-appropriate branches of square root, and
rewriting as a wkbj-style integrated phase,

α ∼







exp
(

i
∫ ∆z

0

√

ω2

v(x,z′)2
− ξ2dz′

)

, |ξ| ≤ |ω|
v(x,∆z)

exp
(

−|
∫ ∆z

0

√

ω2

v(x,z′)2
− ξ2dz′|

)

, |ξ| > |ω|
v(x0,∆z)

.
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The lwkbj operator

The lwkbj operator

lwkbj:

α ∼







exp
(

i
∫ ∆z

0

√

ω2

v(x,z′)2
− ξ2dz′

)

, |ξ| ≤ |ω|
v(x,∆z)

exp
(

−|
∫ ∆z

0

√

ω2

v(x,z′)2
− ξ2dz′|

)

, |ξ| > |ω|
v(x0,∆z)

.

locally homogenous:

α ∼







exp
(

i∆z
√

ω2

v(x)2
− ξ2

)

, |ξ| ≤ |ω|
v(x)

exp
(

−
∣

∣

∣
∆z

√

ω2

v(x)2
− ξ2

∣

∣

∣

)

, |ξ| > |ω|
v(x)

.
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The ideal lwkbj amplitude
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Truncated lwkbj amplitudes
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The ideal lwkbj phase
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Self-censoring property
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The parametric view
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Marmousi imaging
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High-resolution image (101 pt operator)
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Fast image (15 pt operator)
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Performance

Tradeoffs: stability, fidelity, and time

More stability means a stronger gradient.
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Performance

Tradeoffs: stability, fidelity, and time

More stability means a stronger gradient.

A stronger positive vertical velocity gradient means a loss of
higher wavenumbers.

A stronger positive vertical velocity gradient means shorter
operator lengths are possible (i.e. a faster calculation).

The high resolution (101 pt) image: ∼ 18 hours.

The fast (15 pt) image: ∼ 8 hours.
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Conclusions

Designing an operator using a local positive vertical velocity
gradient instead of a locally homogeneous approximation results in
a wkbj-style integrated phase approximation.
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This operator can be used to migrate very complex images with
high accuracy.
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Conclusions

Designing an operator using a local positive vertical velocity
gradient instead of a locally homogeneous approximation results in
a wkbj-style integrated phase approximation.

This lwkbj operator enhances operator stability when spatially
localized.

This operator can be used to migrate very complex images with
high accuracy.

It is extremely simple to implement.
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