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Seismic Interferometry

CCF: 3-d VSP, sources at surface, receivers in vertical well(s),
apply s/r reciprocity, CCF via integration over the sources

One-Sided TRM: propagate from source plane to mirror plane,
record, reverse recording, propagate to receiver plane, record



Seismic Interferometry
Cross Correlation Function (CCF)

*

CCF (w)= [, dG (w2’ x";2,x)|G" (wiz. %2 X")| (FD)

CCF( [ f dwexp th)

*

degG_(w;ZY,gY;z,g)[G+(w;z,X;ZZ,XZ)} (TD)

One-Sided Time Reversal Mirror Experiment (TRM)

TRM (t):H(t)fot ds |, dx

-G‘(t—s;z ,XY;Z,X)GJr(T—S;Z,X;ZZ,XZ)
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Wave Field Modeling

Scalar Helmholtz Equation
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Wave Field Modeling
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Seismic Interferometry Modeling

While seismic interferometry uses the actual data, and is
independent of an underlying velocity model, we will model the
wave propagation process with the decoupled, one-way wave
equations (lhs). Take appropriate one-way Green'’s functions for
the seismic interferometry expression.



Seismic Interferometry

Goals

(1) Establish the connection between the signal processing CCF
and PSF, and the experimental, one-sided TRM.

(2) Characterize the wave field components in the CCF and PSF
(explicitly for a homogeneous medium).

(3) Understand the nature of the wave field components in terms
of the TRI, governing, time-domain wave equation, the
corresponding, one-sided TRM, and the non-TRI, one-way
wave equation.

(4) Explicitly illustrate the connection between the PSF and the
one-sided TRM for a homogeneous medium.



Connecting the CCF and TRM

t—l—
TRM (t)=H(t) | ds | ,dx
-G_(t—S;ZY,lY;Z,§>G+(T—S;Z,X;ZZ,XZ)
Causal structure of Green’s functions,
TRM (t)= [ ds | ,dx
-G‘(t—s;zY,gY;z,ﬁ)Cﬁ(T—s;z,g;zz,gz)H(s)

Note that TRM (t) —0,t <0



Connecting the CCF and TRM

Fourier convolution theorem, causal structure of Green’s function,

TRM (w) = exp(in) 2 dxG™ (w; 7Y ’XY ; 2,5)

.j;T dsexp(—iws)G* (s; Z,X;z° ,52)

= exp (iwT) L OXG™ (w; z' x":z, x)

- /
.fRdw’ > K(w :w >T] G (w’; Z, X 2%, X% )
T{W w

)



Connecting the CCF and TRM

Fourier transform back to time domain,

TRM (t) [ ]f dwexp|—iw(t - T)]{ L IXG ( z' X"z, x

f dw/sin (w+w/,)T]G+(w’;z,x;zz,ﬁz)>
R 18 w—l—w)

Take IImT — oo,t — 00, T —t — 7, noting,
Siﬂ[(w—l—w’)T}

7T<w—|—w') T—00

>6(w + w/) (delta family)

and



Connecting the CCF and TRM

*

G* (—w) = [G+ (w)} (symmetry relation)

to obtain,

TRM (t)

1 .
S >[27T fRdweXp<le>{ deﬁ

.G(w;zv,zY;z,ﬁ)[(ﬁ(w;z,z;zz’xz)ﬂ

— CCF <—T)

Relationship holds for all choices of Green’s function normalization



Green’s Function Normalization

Relating the seismic 3-d VSP to the CCF in a form that connects
directly to the one-sided TRM requires the application of s/r
reciprocity. For a general, range- and laterally-dependent
environment, the one-way Green’s functions must satisfy the s/r

reciprocity principle.

This can be accomplished with the vertical-acoustic-power-flux
normalization. (The operator WKB amplitude.)

Since the calculations presented here are for range-independent
environments, this is not an issue, since all normalized Green'’s
functions satisfy the same one-way wave equation and the s/r
reciprocity principle.



Calculation of Homogeneous Medium CCF

Specification of Green’s functions (velocity = 1)
Want CCF to resemble a Green’s function as closely as possible

G (w; Z, X; 7% ,gz ) =G (w; Z, X, vAa ,52) (point source GF)

(] dp“"‘”[p°<”z>+<“z><lpz)”]
8m? ) |plst —

=T )

eXp[pr (5 )}exp- w(z—zz)(‘_p‘Z_l)l/z'

oz | P , P2 :
[ ] (‘ _1)




Calculation of Homogeneous Medium CCF
:Gp(w;z,g;zz,gz)JrGNP(w;z,g;zz,gz)

G‘(w;zY,gY;z,g):

5 (

(ool pte - -l
+fp‘>1d9 exp[ (xY —5)}exp :—w(Z 7" )(‘_p‘z _1)]/2:}

(one-way propagator identically zero behind the mirror plane)

Substituting and evaluating results in,

*

CCF (w) = [GP( 2V, x" 2%, x )] —GNP(w;

¢, x';0,x7),



Calculation of Homogeneous Medium CCF

=G (w;2",x";2% X 4+ G (wi 2", x"; 2%, 7 )~ G (w6, x50, X7 ),
c=27—7%—z72' (“total travel distance”)

Same results if Green’s functions chosen to be + and - one-way
propagators with the vertical-acoustic-power-flux normalization

Fourier transforming to the time domain and evaluating the
resulting integrals in standard fashion result in,

CCF(t)=-G (—t;zY,gY;zZ,gz)

1 Z S

_|_ 4
(27r)2 (‘X‘z —t2)1/2 (mz 2y 22) (‘X‘Z 2 +g2)
4oL )




Calculation of Homogeneous Medium CCF

CCF(t)= [ﬁ]é(—t— R)

1 Z S

<27T>2 (‘X‘Z —t2)1/2 (‘X‘Z _t2 4 22) (‘X‘Z —t2 —|—§2) 1
4+ )

_|_

I§2:ZZ+‘X‘2,Z:ZY Z Y Z

CCF(t) consists of:
(1) a cylindrical diffuse wave supported for r =|%|>|t/,t >0

(2) a spherical wave and the cylindrical diffuse wave for t <0

When the receiver and source planes are the same, the CCF
becomes the Point Spread Function (PSF)



Calculation of Homogeneous Medium CCF

Z [ s(r2—2) (delta fami
o] e ) ety
then results in

L S
PSF(t)[%]Sgnmé(‘t‘r)(27r>2(r2t2)]/2(r2t2+g2>’
§:2(Z—zz) "

Retaining only the propagating modes results in,

_1~]6(—t—§)+

41R

~

7
(2r)° (r2 —tz)]i2 (r2 —t*+ 22) |

PSE (1) =[5 |san (D (- 1) = (2)san (16 )
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Calculation of Homogeneous Medium TRM

Point source/receiver plane origin at (0, 0, 0)
Mirror plane origin at (O 0, X3)

TRM (t f ds [, dx"

G (t—s 0, X°; Xq, X )G+(T—s;x3,§m;0,g)
The function is symmetric about origin at (0, 0). Thus, take

recording point at (x,3, 0, 0), x,® >0, and then take x,5—r.

Fundamental properties
(1) TRM (t): 0, T <Xg
(2) TRM (t) = 0, for sufficiently short times (hyperbolic)



Calculation of Homogeneous Medium TRM

(3) TRM (t) is of finite extent in r on the source/receiver plane

(4) Despite 3-d nature of wave propagation, there will be weak
(algebraic) singularities characteristic of 2-d case

Green’s functions

G"I_(T _S;X?,,Zm;o’g):[—Jé(S—T 1 L), L2 _ X§ _|_r2

4L

G (t—5;0,%%; %, X" ) =20, -[i]é(t—s—L):,

2
L% = x5 +r° (xf) — 2Xr cosf

transforming to polar coordinates in mirror plane



Calculation of Homogeneous Medium TRM

The derivative, 8X3, is written in form,

20

1 .
" [—47'("_]6(1: —5— L)} =lim. _, 120,

2
LG =& +r° +(xf) — 2% r cos#

Substituting into the original expression results in,

f dsf d@f . S(t—s—L¢)8(s—T+L)

LL,

|

TRM (1) = [87T] t)lim,,_, {af

v =(T? =X vz
(T2 =x)

Evaluating the integrals in the above order results in,



Calculation of Homogeneous Medium TRM

TRM (t) = [2—712] H(T—7)H (T —xg)lim, ., {853 B(M)- B(o)]},

B(M)= Re{of]/z Iog[Z(aR(M )2+ 2aM +6]},

R(M)=aM?+ M +~,M =min(t,T —x;),7=T —t,
and where «, 3,~ are functions of r,7,T, X3, &;

Evaluating the above expression results in,

TRM (t) = TRM (T,T):[ 2 JH T —7)H (T = %)

(r2 —TZ)T + 27'X§

(72 - rz)((r2 —72)[r2 —(2T —7)2]+4r2x§)

1/2 [

(I’z —72)1/2 (rz —7° —|—4X§)

+




Explicit Connection of PSF and TRM

For the same source and receiver plane,

X3

2
T

TRM (t)=TRM (7,T) =

]H(T—T)H(T—x3)

(rz —TZ)T + 27X§

172 [

1/2

(I’Z —7'2) (r2 —7° —|—4X§)
_|_

(72 - rz)((r2 —72)[r2 —(2T —7)2]+4r2x§)

+

In the IIMT — o0, there are two terms; the first,

—X3/7T2>(r2 —TZ)T

(r2 —72)1/2 (r2 —7° +4x§):(72 - rz)((r2 —72)[r2 — (21 —7)2]+4r2x§

1/2

_|_

and the second,




Explicit Connection of PSF and TRM

(—27‘X§’/7r2)

1/2
1/2
(r2 —72) (r2 — 7 +4x§)

_|_

(72 - rz)((r2 —72)[r2 — (21 —7)2]+4r2x§

_|_

In the infinite T limit, the first term goes to,
—q

Terml (27T>2 (rz 2 )1/2

T—o00
(r2 _ 2 _1_g2)
_+_

where ¢ = 2X4 is the appropriate travel distance

Retaining the leading order term and noting that,

fa(X)= =
WX(X—AZ)

172 "’ A—0 ,
+

is a delta family, establishes that the second term goes to,



Explicit Connection of PSF and TRM

Term2——— >[ 7 ]6(r2 —72)

—Lson (7))

Combining the two results then establishes that,

TRM (t) =TRM (7,T ) —— >[ sgn ()6 (|| —r)

87r




Observations

(1) In addition to the expected spherical wave Green'’s function
components, the CCF and PSF contain cylindrical diffuse
wave components.

(2) In the CCF, one of the cylindrical diffuse wave components
originates with the propagating modes.

(3) Even restricting the calculations to the propagating modes,
and restoring TRI at the level of the one-way wave equation,
the PSF displays an “extraneous” Green’s function component.

(4) This is consistent with the TRI, governing, time-domain wave
equation, the corresponding, one-sided TRM, and the non-
TRI one-way wave equation.

(5) The one-sided TRM is consistent with a finite propagation
speed; the CCF and PSF do not correspond to finite
propagation speed, one-sided TRMs.



Homogeneous Medium CCF
Diffuse Wave (2" —2* =1/3,c =1




Homogeneous Medium PSF
Diffuse Wave (¢ =2/3)




Homogeneous Medium TRM
(T =1,x%; =1/3)




Homogeneous Medium TRM
First Term (T =100, x; =1/3)




Homogeneous Medium TRM
Second Term (T =100, x; =1/3)




Interferometry with a Reflection: Interface Profile

2-d, discontinuity (two-layer) profile,
K?(x)=K{ +(K3 = KZ)H (x),K;, K, >0
Point Spread Function (propagating modes only)

PSF P (t) = (1/2)sgn t)G |

Defining
I S . r S
x>:max(x , X ),x<:m|n(x , X )

t

;O,xr;O,xS)

there are three distinct cases:

(1) X. >0>x_ (transmission problem)
(2) X. > X_ >0 (reflection problem)

(3) X. <X, <0 (reflection problem)



Interferometry with a Reflection: Interface Profile
Case (1): X, >0>x_
PSF P (t) = (1/2)san (t) H [co |t — (Kpx. + Ky

Co

M2 <71—V2>

' 7 (K{ K3

C(71X> 72 ‘X<D -
=Co

B 1 X% + X2 KZx2 — K{x2
0 = 2 22| 22 N -
(x>—x<) > > <
1 Xi 2 2(v2 2 2 2
—_ ; ; > 5 Iu —|—2X<<X<—X>)(K2—K1)M
e
2

N2 = (K12,2 +¢

/2

-

/2



Interferometry with a Reflection: Interface Profile

Case (2):x. >Xx_ >0

Co

PSF® (t)=(1/2)sgn (t);

Co

| 27| (cat)” ~ (K,R)’|

V2

+H [CO |t| — sz]

2 (KF K¢ (cot)* — (Kap)’|

— T S
R=X —X_=|X —X

Case (3): Xx. <x. <0

2

coltl[[c_ot]2+(KfK5)

0

H [co t|— KZR]

1/21°

0

=X X =X +x°

The same result as case (2) upon interchanging K, K,

and noting that p = x|+ |x_|= [x"

_|_

X

S




Summary

(1) The CCF and PSF are signal processing constructions, and
the one-sided TRM is an experiment; they are related by,

TRM (t) . CCF(—7)

T—o0,t—o0, T —t—T1

(2) The CCF and PSF contain components other than the
expected Green'’s function components. (From a naive
perspective, these are viewed as “artifacts.”)

(3) This is consistent with the TRI, governing, time-domain wave
equation, the corresponding, one-sided TRM, and the non-
TRI one-way wave equation.

(4) Even restricting the calculations to the propagating modes,
and restoring TRI at the level of the one-way wave equation,
there are “artifacts” as viewed from the naive perspective.



