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Want to know: 

•Positions of reflectors

•Numerical estimates of earth properties



Classical Wave Theory
Environmental Modeling: Marmousi

Environmental Difficulties

1) Complex, layered environments

2) Multidimensional environments

3) Inhomogeneous background

4) Large scale (many wavelengths)

5) Strongly inhomogeneous environments

6) Focusing and defocusing regimes

Velocity



Seismic Imaging Paradigm
A common seismic imaging methodology is derivable from 

first-order inverse Born scattering
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Seismic Imaging Paradigm
Seismic imaging typically is done in the frequency domain 

and uses depth steps not time steps, so a more common  
imaging condition is:
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Locally Homogeneous Medium Wavefield 
Extrapolation 

(the GPSPI method)
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In the limit of an infinitesimal step, the corresponding one-
way wave equation is



Locally Homogeneous Medium Wavefield 
Extrapolation (GPSPI) 

(physics formulation)
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Three Common Misconceptions About 
GPSPI 

1) The one-way wave equation corresponding to the 
limiting form of the GPSPI algorithm 

is believed exact for a range-independent medium.  
The square-root function is believed to be the correct 
function (symbol) for infinitesimal wavefield 
extrapolation.
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Three Common Misconceptions About 
GPSPI

2) The wavefield growth problems, which can develop for 
finite, range step-size, are believed to vanish in the 
limit of zero, range step-size, since, in that limit, the 
theory is believed to be exact.  The amplitude 
problems are assumed a result of the numerical 
discretization, and are not viewed as fundamental in 
nature.

3) Since, in the typical derivation of GPSPI, the up- and 
down-going wavefields are assumed to be 
independent, it is thought to be impossible to 
extrapolate a full, two-way wavefield by well-posed, 
one-way marching methods.



Misconception 1
Physical arguments (and rigorous mathematical 
arguments) establish that the symbol must be frequency 
dependent. 
Consider the following environment:
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in the (1) high- and (2) low-frequency limits.



Misconception 1
(1) In the high-frequency limit, the environment appears 
locally homogeneous, and the exact symbol approaches 
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(2) In the low-frequency limit, the environment appears 
globally homogeneous, and the exact symbol approaches 

( )1/ 22 2
0K p−

Thus, the exact symbol must be frequency dependent, and 
cannot be the locally homogeneous symbol for all frequencies.



Locally Homogeneous Approximation
3-Layer Profile
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Locally Homogeneous Approximation
3-Layer Profile

( )( )Im ,p qΩB



Exact Operator Symbol
3-Layer Profile

( )( )Re ,p qΩB



Exact Operator Symbol
3-Layer Profile

( )( )Im ,p qΩB



Exact Operator Symbol
3-Layer Profile

( )( )Re ,p qΩB

Rotated View



Exact Operator Symbol
3-Layer Profile

( )( )Re ,p qΩB

Rotated View
Lower Frequency



Exact Operator Symbol
3-Layer Profile

( )( )Re ,p qΩB

Rotated View
Even Lower Frequency



Exact Operator Symbol
3-Layer Profile

( )( )Re ,p qΩB

Rotated View
Lowest Frequency



Misconceptions 2 and 3
2) The locally homogeneous square-root function is just 

an approximation to the exact symbol.  It does not 
inherently conserve the integrated energy flux.  The 
wavefield growth problems experienced by GPSPI are 
fundamental, and not solely a discretization artifact.  
This is a reflection of the true nature of this 
APPROXIMATION.

3) We will, indeed, construct an exact, well-posed, one-
way reformulation of the two-way Helmholtz equation.



Classical Wave Theory
Modern Approaches – Principal Themes

1) Incorporation of well-posed, one-way methods into 
inherently two-way, global formulations

2) Exploitation of correspondences between classical 
wave propagation, quantum mechanics, and modern 
mathematical asymptotics

3) Extension of Fourier analysis to inhomogeneous 
environments 



Mathematical Illustration
Scalar Helmholtz Equation
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General Radiation Formulation
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Basic Scattering Picture

(1) Scattering Block Decomposition

S

a 0x b0x

(a) Individual block scattering problems
(b) “Glue” solutions together (block multiple 

scattering)



Basic Scattering Picture
(2) Fundamental Scattering Problem

Desire for one-way methods – simplest one-way
marching scheme
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Ill-posed for simultaneous marching of wavefield and
normal derivative in range direction

Non-independent initial data

Relationship between wavefield and normal derivative
is key to well-posed marching method



Basic Scattering Picture

(3) Correct Scattering Kinematics (Geometry)

βα

S φ+

φ−

φ φ+

( ) ( ) ( ) ( )11, , ,
2 x

ix z x z x z
k
B∓φ φ φ± −⎡ ⎤

= ∂⎢ ⎥
⎢ ⎥⎣ ⎦

( )( )1/ 22 2 2( , ) 1 zK x z kB= + ∂



Well-Posed, One-Way Methods
(2) Exact, Well-Posed, One-Way Reformulation

Scattering Picture

α β

S ( )φ α+

( )φ α− =

( )φ β+ =

( ),α β+R
( ),α β+T

( ) ( ),α β φ α+ +R

( ) ( ),α β φ α+ +T

Scattering operators associated with global block.

All internal multiple scattering incorporated into 
scattering operators.



Well-Posed, One-Way Methods
(2) Exact, Well-Posed, One-Way Reformulation

Given then propagation from is given by( )0 , ,x zφ 0x
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Well-Posed, One-Way Methods
(2) Exact, Well-Posed, One-Way Reformulation

and
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Well-Posed, One-Way Methods
(2) Exact, Well-Posed, One-Way Reformulation

(1) Now have two, well-posed marching problems, in opposite
directions, done in succession.     

(2) Must cover both directions for the two-way “elliptic wave 
propagation” problem: one direction to get the DtN operator
and the other direction to propagate the total wavefield
with the DtN operator.

(3) The idea is not to do the first marching procedure (DtN
operator construction) computationally, but, rather, to solve
the problem asymptotically.  Thus, there will be only one,
one-way marching computational procedure. 

(4) The initial field calculation will also be done asymptotically.



Two Complementary Approaches
DtN Operator One-Way Reformulation

(1) Propagation operator:

(2) One-way wave equation:

(3) Fundamental solution (propagator):

(4) Single-sweep algorithm on total wavefield 
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Seismo-Acoustic Operator Constructions
Propagation Operators

(1) Formal operator series/rational approximations on square-root 
operator (Claerbout, C. J. Thomson, Tappert, etc.)

(2) Formal operator series on DtN operator (Bleistein, Zhang, and 
Zhang; Chapman)
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Seismo-Acoustic Operator Constructions
Fundamental Solutions (Propagators)

(1) Operator rational approximations for the propagator (Collins)

(2) Path integral representations: time-domain wave equation 
(Schlottmann); fixed-frequency, one-way, anisotropic, elastic 
wave equation (C. J. Thomson)

( ) ( ),0 expx ikxG B+ =

Critical Comments

(1) ( ) ( )( )1 22 2 2, 1 zK x z k+ ∂ does not define the operator

(2) Formal operator Taylor series do not define the operator

(3) Operator series expansions are nonuniform and singular



Phase Space and Path Integral Methods

General Problem:
At the simplest level, explicitly construct operator functions 
of the type:

( ) ( )( )1/ 22 2 21/ zK z k= + ∂B
and the corresponding fundamental solution,

( )exp ik xB

History:
(1) Development of Quantum Mechanics
(2) Development of Modern Mathematical Asymptotics



Mathematical Framework
Homogeneous Half-Space

(1) Wave Equation
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Mathematical Framework

(2) Path Integral
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Mathematical Framework
(3) Marching Numerical Algorithm
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Mathematical Framework
Transversely-Inhomogeneous Half-Space

(1) Wave Equation
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Mathematical Framework

(2) Path Integral
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Mathematical Framework
(3) Marching Numerical Algorithm
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Mathematical Framework
Arbitrary transverse inhomogeneity
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Mathematical Framework

Can we take the desired exact and uniform approximate 
operator symbol constructions directly from the quantum 
mechanical and modern mathematical asymptotic literatures?

(1) Mathematical analysis → Quantum mechanical results

Natural Question

(2) While the mathematical analysis provides the complete 
framework for the equations, microlocal analysis 
(asymptotics) only considers part of the solution – it is an 
approximation

Why?

Answer – No!



Mathematical Framework

(3) Approximation appropriate for time-domain formulations 
not frequency-domain Helmholtz equation (propagation of 
singularities versus smoothing) 

(4) Will result in nonuniform, singular approximations for 
Helmholtz equation

Why?

Illustration – Weyl composition equation
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Mathematical Framework
Illustration – Weyl composition equation
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Mathematical Framework
Illustration – Weyl composition equation
The corresponding result in the standard calculus is

All are nonuniform, singular expansions.  
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For the case of the DtN operator symbol, the result is
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Proper theory requires going beyond examples from quantum
mechanics and results from modern mathematical asymptotics.



Exact Symbols – Focusing Quadratic
Profile
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Exact Operator Symbol
3-Layer Profile
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Locally Homogeneous Approximation
3-Layer Profile
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Exact Operator Symbol
3-Layer Profile
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Rotated View0.001k =



Uniform High-Frequency Expansion
Operator Symbol
(1) n = 2

(2) Refractive index field varies “slowly” on wavelength scale
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Uniform High-Frequency Expansion
Operator Symbol
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Pseudodifferential Versus Exact



UHF Versus Exact



Uniform High-Frequency Wave Theory

(1) Distinct from high-frequency approximations made 
directly on the wavefield, including the globally uniform, 
high-frequency constructions of Maslov (Fourier transform) 
and Klauder (coherent-state transform)

(2) Incorporates wave (diffraction) effects via “sum over 
paths” in phase space and uniform approximation of phase 
functional (operator symbol) in path integral

(3) Correct incorporation of both high-propagating-angle and
post-critical wave phenomena

Path Integral + UHF Standard Operator Symbol

(4) Essentially the difference of classical, high-frequency 
asymptotic wavefield as (1) global solution and (2) local 
solution repeatedly composed to produce a global solution 



Applications to Seismic Imaging

(1) UHF symbol imaging (Born, decoupled 
wavefield extrapolation)
(a) Full symbol – accuracy assessment

(b) Simplified symbol approximation for increased
computational speed

(2) DtN symbol imaging (Born, coupled
wavefield extrapolation)



Mathematical Framework

( ) ( )1 , ; ,x x b p qk Λ+∂ Ω =
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Generally-Inhomogeneous Composition Equation
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Generalized (nonlocal) Riccati equation
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Applications to Seismic Imaging

(3) Direct, non-perturbative, one-way 
marching inversion algorithm 
(a) Full multiple scatter

(b) Exact “imaging conditions”

{ },φ φ+ − Through the Reflection operator

{ }, xφ φ∂ Through the DtN operator



Applications to Seismic Imaging
(c) Operator symbol as “data”

(d) Complementary asymptotic/numerical 
downward continuation of the “data”

Potential Benefits
(1) Accommodation of primaries and multiples

Exact, well-posed, one-way reformulation
Corresponding exact “imaging condition”

(2) High-angle imaging in heterogeneous media

(3) Better amplitude estimation through improved flux
conservation and increased accuracy



Conclusions
1) One-way wave equations can be constructed that incorporate 

all of the forward and backward scattering inherent in the two-
way wave equations. 

2) The above one-way formulations can be made explicit by 
exploiting the correspondences between classical wave 
propagation, quantum mechanics, and modern mathematical 
asymptotics.

3) Effectively, these constructions extend Fourier analysis to 
inhomogeneous environments. 

4) Uniform high-frequency asymptotic operator symbol
approximations extend GPSPI.

5) Everything just runs like the GPSPI algorithm.

6) Exact imaging conditions are constructed that account, in
principle, for all of the multiple scattering. 


