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Detection of Buried Objects
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Detection of Buried Objects

E =FE'+ FE*.

E* decays appropriately as |z| — oo.

E' is an electric dipole with source at x = z.
On 0D either

1. vx E=0o0on0D or

2. [vx E] =0 across 0D =T, UT,

v x H| =0 across I’y

v x H| =n(x)(v x E) x v across [’

where 1) is the surface conductivity and in D the
index of refraction is a matrix N(x), i.e. D is
anisotropic.




Inverse Scattering Problem

From a knowledge of
v X E(z,x9,p) and v x H(x,z0,Dp)

for x on the surface of the earth, 2o € A and two
linearly independent polarizations p tangential to A at
To, determine D.

Remark: 1", a perfect conductor corresponds to
n = o0o. In particular D a perfect conductor corresponds

tol', =0D, 'y =0, n = o0.

Remark: Our methods are also applicable to the case
when v x E and v x H are measured above the surface
of the earth.




Reciprocity Gap Fuctional

Let k7 = k*ny, and

H={W e H(curl,Q): VxV xW —EW =0}.

It E(x,x0,p) and H(x,x9,p) = ﬁvx x E(x,xq,p) is
the total field then the reciprocity gap functional
R(E, ) : H — LZ(A) is defined by

R(E, W) =

/aQ[(yxE)-(VxW)—(VXW)-(VXE)]ds.

Instead of the whole space H, it suffices to consider a
dense subset.




Examples of Dense Subsets

o IV =L, with E, being the electric Herglotz wave
function given by

E,(x) = / o(d)e 0+ ds(d),

SQ

g € L{(S?).

In this case R(F, E,) = Rg : g € L7(S?) — L?(A).

o I = A¢p with A¢ being the single layer potential
given by

(Ap)() = V x ¥ / o(y) ds(y),

o012

dr|z — y|

In this case
R(E, Ab) = R : 6 € L3, (00) — LA(A).




Solving the Inverse Scattering Problem

Considering A¢ for ¢ € L2, (092), we look for a solution
¢ to the equation

Ro=R(E, E.(-,2,q,kp)) z € Q)

where Rp = R(E, A¢) and

E ) = -V, XV, x g
e\L; %, 4, = 7 Vg X Vg X
(52,9, k) Ky q47r|x—z|
eikb]x—z]
He(x327Q7 kb) — VZE X q
drrlx — 2|

is the electric dipole located at z € ().




Solving the Inverse Scattering Problem

Theorem: For every € > 0, there exists an approximate
solution ¢? satisfying

|Ro7 — R(E, Ee(-;2,q,kp))|lL2n) <€ 2 €1
that behaves as follows:
e Forz e D,
lim | AGZ| (D curty < 00.
e For each e > 0,

lim ||A¢§HH(D,curl) — o0

z—0D
and
Tim (16213, om) = 00
e For z€Q\ D
11_{% ||A¢§HH(D,curl) — OO
and

i 62 113, 90y = oo

div




Numerical Implementation

e Construct a grid G.

e For z; € G, solve the regularized equation
(Oz] + R*R>¢Zi;q = Flig-

e Evaluate

1 . . .
Plz) = 5 (102000 17"+ 1zl + 10200017

for z; € G and three linearly independent vectors
15 G2, g3 € R?.
e Fix C' > 0 and visualize the boundary by plotting

P(z) = Cmax P(z;).

2, €G
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A Special Case

Assume

Then

=5 o)

as |r| — oo where £ = z/|x|. The inverse scattering
problem is now to determine D from a knowledge of the
far field pattern

FEo(7) = Ex(2,d,p)

for z € Q:={x: || = 1} and two linearly independent
polarizations p tangential to €).
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A Special Case

We define the far field operator F': L?(Q2) — L(Q) by

(Fg)(#) = / Eoo(#.d, 9(d)) ds(d).

Q

Given g € L?(Q), Fg is the far field pattern of the
scattered field corresponding to the incident field being
a Herglotz wave function with kernel g.

Now consider the far field equation

(Fg)(:%) — E€7OO(£AC,Z,Q)

where E, o is the electric far field pattern of an electric
dipole with source point z and polarization ¢.

For g¢ an approximate solution to the far field equation,
0D is determined by

lim  {[gZ| L2y = o0
z — 0D

ze D
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Information on 7

Let ¢¢ be an approximate solution of the far field
equation

(Fg)([ft) — Ee,w(£7Z7Q)

and E,. the Herglotz wave function with kernel ¢¢.

Assume 7 is a constant. Then we have the following
theorem:

Theorem (Cakoni-Colton-Monk):
Let z be any arbitrary point in D and q a vector in
R?. Then

L e lladP R (g B (2)
lv X (Eye () + Be(,2,0)) 320,y

Corollary: For z € D, ¢ € R?, we have that for any
e >0

) Elgll? + R (g Eye(2))
~ ||Ey () + Ee(-,2,q)

+ O(e).

L2(8D)
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Numerical Examples (R?)

The 40 point sources location

Absorbing mediumwith index n

Sources are located on the blue line.
Measurements are taken on the interface

We will reconstruct D using the reciprocity gap functional where
due to the absorption we can ignore the total field on the base
and sides.
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Numerical Examples (R?)

The 40 point sources location

Using Herglotz functions

The 40 point sources location

Using single layer potentials

Reconstruction for ny = 2 + 0.54
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Numerical Examples (R?)

A
The 40 point sources location
A n=2+i
Using Herglotz functions
A

The 40 point sources location

Using single layer potentials

Reconstruction for ny = 2 + ¢
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Numerical Examples (R?)

-0.54

Example of a perfectly conducting cross.

The interface earth-air is at z = 0. The reconstructions
correspond to n = 2 + 0.5¢ and 1% random noise.
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Numerical Examples (R?)

Reconstruction by using the Reciprocity Gap Functional
k=2




18

Numerical Examples (R?)

04

-0.54

Example of a perfectly conducting torus.

The interface earth-air is at z = 0. The reconstructions
correspond to n = 2 + 0.5¢ and 1% random noise.
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Numerical Examples (R?)

Reconstruction by using the Reciprocity Gap Functional
k=2
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Examples of Reconstructions

Reconstruction of a fully coated ellipsoid with =1 and k = 6.

Conducting boundary condition: reconstruction of 7

Exact | Exact 0D LSM LSM /bound
0.0 -0.005 -0.01 -0.004
0.1 0.09 0.16 0.07

1 0.96 0.79 0.58
2 1.15 0.94 0.66
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Examples of Reconstructions

Reconstruction of a partially coated sphere. The coated portion
['5 is the hemisphere x5 > 0. Here » =1 and k = 3.

Conducting boundary condition: reconstruction of 7

Exact | Exact I's;  LSM LSM/bound
0.1 0.045 0.037 0.027
1 0.94 0.52 0.43
2 2.00 0.81 0.65
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