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Born Scattering Theory
G(r,s)= & [ G(x,r) 3V (x)G(x,s)dx

(just symbolic)

+ provides Fréchet differential kernel dG(r,s) = o [ G(x,r )dV (x)G(x,s)dx
— Green function can be FD
— basis for most inverse methods (Tarantola, Pratt, Burridge et al.)

* allows modelling of scattered waves

— Green function normally approximated by ray theory
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Born Scattering Theory
oG(r,s)= o _[ A(x,r ) OV (x) A(x,s) e Arer T i)y

+ cost in frequency domain <N, N, N, N,

2

oG(r,s)= —%j Ax,r)oV (x) Alx,s)d(t =T (x,r)-T(x,s))dx

* costintime domain <N, N, N,

* s0in 3D, time domain modelling is attractive
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Model and Acquisition Geometry

(courtesy of E. Hopkins and H. Keers, SCR)
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Outline

» standard (perturbation) acoustic Born scattering
— scattering by model perturbations
— travel-time perturbations/Fréchet differential kernel

* generalized (error) acoustic Born scattering
— approximate Green function, e.g. ray theory
— scattering by errors in wave equation

» comparison with 1D inverse methods

— inverse method for parameter gradients
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Acoustic Born Scattering

* equation of motion

—-OP=-w*’pu-1IJ(x-s)

pressgrad  density x acc force
* constitutive equation
Hu=—-kP
dilatation ~ comp x press
* model perturbation B in model A
p=p-+p°
k =k*+k°®
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Acoustic Born Scattering

* solution is known in part A of model;
part B is perturbation

o perturbed equation of motion

~OP*=-w’pu” -1 o(x-s) 0

“force source”

* perturbed constitutive equation

Du’=—kP* +KOPH

“press. source”
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Point Scatterer

X

density perturbation = force source

compressibility perturbation = pressure source
1
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Acoustic Born Scattering Integral

* general source using Green (point source) function

(or.s)= I u' (w,x,r)f(wx) W
+P(a)xr)k P, (w, x)

volume integral of sources
* scattering source

(o, |
u(ar.s)= JLP " (,x, 1) S

volume integral of scattering sources

A B . .
* note w=u +u inintegral
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Acoustic Born Scattering Approximation

* approximate full Green function by Green function in
reference medium

u®(w,r,s)=|

CHC 14/08/06

o o, r) NS

(+P* (w0, x,r) KBRS,

volume integral of scattering sources
with Green function in reference medium

dVv
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Pros and Cons

excellent if perturbations are small and isolated

but

— assumes Green function known exactly
— assumes perturbation has little effect on Green function

what if Green function is approximate?
In general, how do we choose choose perturbation?

what if perturbations are extensive -
how are ray results perturbed?
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The Ray Theory Approximation in the
Born Volume
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Ray Theory -
an Approximate Green function

transmission dyadic
. A .
—“lwu |\ W iyt - g T
=——€ (X, X S

X e e g e

L=pQa impedance

— 2 ~
8= (ZZ) Y g energy-normalized polarization

7 (x,8)=c 7 (x,s) e7®)2 transmission function
ox 0x| /|0p,, 0P,

0q, 00, / 0g, 0q,
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Acoustic Born Scattering Approximation
frequency domain

wZ
AT
K®(x,r,s)=—g(r) o7 (x,r) [ ®(x,r,8) &7 (x,8) ' (S)

r8(x,r,s)=g’ (x,r)-g(x,s)—% Z (x) REIE)

scattering scalar amplitude (independent of frequency)

EB(C(),I',S) ~ IK B(X,I’,S) eia)T(x,r,s)dV
V

T(x,r,s)=T(x,r)+T(x,s)

s total scattered travel time Schilumberger



Acoustic Born Scattering Approximation
time domain

1 d?
A77° dt?

__ 1 dZJK (xrs)
4 dt® \DT(xrs)\

u®(t,r,s)=— jK (x,r,8) It -T(x,r,8))dV

t=T(x,r,s)
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Born Kernel for Travel Time

90031600 KIP.T.41730.5H1.91 99031600 KIP.T.A730.5H1:91

49031600 KIP.¥.1730.5H1.92

Fig.2 (sm™) x 10"

L. Zhao, T.H. Jordan and C.H. Chapman, 2000.
Three-dimensional Frechet differential kernels for seismic delay times,
Geophys. J. Intl., 141, 558-576. Schlumberger
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Point Perturbation @l and Bl Ray

S ut(t,r,s)=-ot-T(r,s)- T ) K ®(x,r,s) AV

r

 Born scattering is second derivative of incident pulse
* on-ray scattering, pulse only distorted, not delayed

* traveltime perturbation is due to perturbations off the ray (within
Fresnel zone), integrating laterally to give first derivative of incident
pulse
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Born Scattering Theory for Modelling

2

5G(r,s) = -% [ Ar) 8V(x) Alx,s) 3t ~T(x,r)-T(x,s)) dx

efficient in time domain

efficient for small isolated scatterers

intuitively not physical for extended scatterers

— scattering should be from gradients not perturbations

only models travel time correction as € =1+i wdT

for extended scatterers
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Born Scattering Dichotomy

« for an extended perturbation, the Born approximation
must correct travel times, plus model scattering from
edges of perturbation

+ it gives a perturbation u® (w,r,s)=—iw EA(a), r,s) T°
which at high frequencies is a very poor approximation
+ ifthe perturbation is halved, k*+k®/2= k", k®/2= k"

the travel-time error is reduced, but the scattered signal from the edges
Is also reduced!
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Generalized Born Scattering

recall wave equation with perturbation

A . :
 suppose P and 1_1Aare not exact solutions in model A

* error in equation of motion

-0 2p" u-0P*+13(x-s) 20

* similarly in constitutive equation error is
B =00+ k"P" %0

 note these are definitions of errors not differential equations
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Generalized Born Scattering

» modifed equaton of motion and constitutive equation

—O0P*=-w?p EA—IJ(x—s)+!
error + perturbation
Ju*=-kp"* +. similarly
* Where

A

F+w p®u
Q A+ k B E A
errors  perturbations

CHC 14108106 Schlumbepgep



Generalized Born Scattering

» standard Born scattering (perturbations are sources)

u’(wr,s)=

* generalized Born scattering (errors+perturbations are
sources)

e
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Generalized Born Approximation

* ray approximation

_inA __iC() iwT M(O) — 2 T
[ _pA J_ ETe [_E(O)J 5_[ 7 (X, S)( ( /z)yzj(x) g' (s)

e error terms

_ G p©
2

— i | T DV(O)
27T -
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Generalized Born Approximation

u (t,r,s)= -

CHC 14/08/06

time

domain

477° dt?

1 & (KP(xrs) |
o7 (x

OT(x,r s)\
K*(x,r, s)

4n2dtj\

OT(x,r s)\

perturbation
scattering

error
scattering
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Generalized Born Approximation

* acoustic scattering kernel
KE(x,r,8)=-vg 0P + Py Ovg)
=—%IMS)TDE§” P00 + (R0 v - (130 PO
=-g(r) % M* % ¢'(s)

(ignoring derivatives of source and receiver directivity)
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Generalized Born Approximation

» scalar ray acoustic scattering kernel

M (x,r,8)= 1(DZ _Dj'(éR +§s)_£(m In%)'(AR _és

4\ Z
1

=~ (8: +&,).On(z77)

using energy conservation 0.7 2g)=0

AN

CHC 14108106 Schiumberger



‘2D’ Profile in French Model
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U=

Born Perturbation in French Model
— volume scattering from model perturbation
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Born Error in French Model
— volume scattering from ray theory errors

- H_the[A(t T)k|av rf=2(. +&)on(z77)
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Elastic Generalized Born

* just as acoustic generalized Born except
re(x,r,s)and  TI(x,r,s)

are more complicated
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Generalized Born Approximation

« references

— C.H. Chapman and R.T. Coates, 1994.
Generalized Born scattering in anisotropic media,
Wave Motion, 19, 309-341.

— R.T.Coates and C.H.Chapman, 1991.
Generalized Born scattering of elastic waves in 3-D media,
Geophys.J.Int. 107, 231-263.

— C.H.Chapman, 2004.
Fundamentals of Seismic Wave Propagation,
Cambridge University Press.
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cf. Transformed Wave Equation in 1D Model

* to understand generalized Born
* {oinvestigate the inverse problem

dw . 1D differential wave equation
— = IwAW
dz in (a;, D, Z) domain
VZ
W=l b variables
AW =Wp eigen-equation (U/D separation)
r= Ip d¢ vertical delay time

Schlumberger



Bremmer Coupling Equations

w=W exdi a)r)r resolve into U/D components
W exdi a)r) = "rays’ I ="ray amplitudes”
dr . . o . .
prs = exp(— | a)r) C exp(l aJT) I coupling differential equation
C=-W ‘10;ﬂ coupling differential coefficients
Z

(D = () 4 J' exp—iwr)C expliwr)r ™ d¢ iterative coupling

“Born error series” C_LTE
Schlumbepgep



Differential Coupling Coefficients

c=-wr W _[O )
dz Vi O

Ya=" liln 2
2dz |\ q,

1D Bremmer iterative solution

— H. Bremmer, 1949
Terrestrial Radio Waves
Elsevier Publishing Company, p. 159

- J.G.J. Scholte, 1962
Oblique propagation of waves in inhomogeneous media
Geophys. J.R. astr. Soc., 7, 244-261
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1D Inverse Problem

« classic solutions

— Gel'fand & Levitan (1951), Marchenko (19595), Gopinath-Sondhi (1971),
Blagoveschenskiy (1978), ...
(R. Burridge, 1980. The Gelfand-Levitan, the Marchenko, and the Gopinath-
Sondhi integral equation of inverse scattering theory, regarded in the context of
inverse-reponse problems, Wave Motion, 2, 305-323)

+ K. Bube and R. Burridge, 1982. The one-dimensional inverse
problem of reflection seismology, SIAM Rev., 25, 497-559.
— downward propagate wave variables W
— causal point gives reflected wave
— ratio of components of wave variables gives V,/P=q,/p0

material properties
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1D Inverse Problem — Bailey’s method

+ R.C.Bailey, 1970. Some inverse problems in geophysics, Ph.D.
thesis, Cambridge University.

— N.D. Bregman, C.H. Chapman and R.C. Bailey, 1985. A non-iterative
procedure for inverting plane-wave reflection data at several angles of incidence
using the Ricatti Equation,

Geophys. Prosp., 33, 185-200.
downward propagate reflectivity R= 1 / I,
causal point gives differential reflection coefficient  J/ o

* ray continuation
downward propagate ray amplitudes I
causal point gives differential reflection coefficient  }/ 5
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Ricatti Reflectivity Equation

‘ I t1 ;O = data
R(w, p,7) = W@ p7) reflectivity (up/down) 1(t, PO )
(@, P.7) r,(t, p,0) = source
1dR .
——=iwR+y,(1-R° S .
2dr Val ) Ricatti equation
1d

LR, 1) === R( .1+ 1,(. 10 - RE 1) ORE, P.1))

Va = —Eiln[ﬁj = (iff. reflection coeff.

R(O-, p,7) =0 causality
RY(t, p,7) = yA(p.2T —t)H (t) 1t iteration

Lt p0) =r,(t p.0) Ly (p,—t)H(t)
convolution model

yAa(p,2r) = R0+, p,T) inverse solution
Schlumberger




Differential Coupling Coefficients

c=-wr W _[O Vi
dz Vo O

- dP dv 1d Jo,
— _Wsymplectlwr = —v Mis _ P S—_~— In Nl
& i > Rdz "dz 2dz [ j

cf. generalized Born approximate kernel

KE(x,r,s)=-vOOPY + OOy

Schlumberger



Generalized Born v. 1D Bremmer

at reflection point use
Snell coordinates

A =—sgn(ps +Ps)

m :Sgr(ﬁxps)
— | | =mxA
SO
\l,ja I fps +ps)=0
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Generalized Born v. 1D Bremmer

E —\,OT ¥=5] (T YV¥g
K (X,I’,S)—MR ERj
0X. oX,

]
=-gr) % " % g'(s)

+ source/receiver
directivity derivatives

in local Snell coordinates

(0) (0)
ot Otsn _{OT 0Vg

K=(x,r,8)=V, PR LU + transverse terms
n n
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Generalized Born v. 1D Bremmer

(0)
V
{ 1 j =7 (X.x) [tg j(x) g'(r) ray amplitude coefficients
’ j

gt normalized for energy-flux along ray
v \@ ~
(_; =7 (x,1) [ )(x) g (r)
- N R

g :(ﬁd/ ) 0 normalized for energy-flux in N direction
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Generalized Born v. 1D Bremmer

KE(x,r,s)=vy —2 —tDT2=s_ + fransverse terms
c‘)n on
==g(r) 7 y% g'(s)  +sourcelreceiver
directivity derivatives
+ transverse terms_
+ derivatives of &7~
where

Sj generalized Born

= — WP 1D Bremmer
Schlumberger



Conclusions — Perturbation Born

» standard perturbation Born provides the
Fréchet differential kernel

» standard perturbation Born scattering theory is suitable for
small, isolated perturbations

it describes the travel-time differential kernel,
which is zero on the ray path
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Conclusions — Error Born

* generalized error Born scattering theory is needed for extended
scatterers

* generalized Born models reflections from gradients as in the 1D
Bremmer method

+ forms foundation for inverse theory a la 1D exact inverse methods
— invert for parameter gradients

— proceed as generalized Radon transform inversion except inverting for
parameter gradients not parameters, with curl-free constraint
(R. Burridge, M.V. de Hoop, D. Miller and C. Spencer, 1998.
Multiparameter inversion in anisotropic media,
Geophys. J. Int., 134, 757-777)
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