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Born Scattering Theory

• provides Fréchet differential kernel 

– Green function can be FD

– basis for most inverse methods (Tarantola, Pratt, Burridge et al.)

• allows modelling of scattered waves

– Green function normally approximated by ray theory
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Born Scattering Theory

• cost in frequency domain
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• cost in time domain

• so in 3D, time domain modelling is attractive
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Model and Acquisition Geometry

(courtesy of E. Hopkins and H. Keers, SCR)



Traces at x = 50m, 2.5%

(courtesy of E. Hopkins and H. Keers, SCR)
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Outline

• standard (perturbation) acoustic Born scattering

– scattering by model perturbations

– travel-time perturbations/Fréchet differential kernel

• generalized (error) acoustic Born scattering

– approximate Green function, e.g. ray theory

– scattering by errors in wave equation

• comparison with 1D inverse methods

– inverse method for parameter gradients
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Acoustic Born Scattering

• equation of motion

• constitutive equation
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Acoustic Born Scattering

• solution is known in part A of model;

part B is perturbation

• perturbed equation of motion

• perturbed constitutive equation

“force source”
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Point Scatterer

density perturbation = force source

compressibility perturbation = pressure source

s
x

r

AB
uρω 2−AB Pk



CHC 14/08/06

∫ 













+
=

V

V
PkP

d
),(),,(

),(),,(
),,(

SS
T

S
T

xrx

xrxu
sr

ωω

ωω
ω

f
u

Acoustic Born Scattering Integral

volume integral of scattering sources
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• note                            in integral
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• general source using Green (point source) function

• scattering source
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Acoustic Born Scattering Approximation

volume integral of scattering sources

with Green function in reference medium
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• approximate full Green function by Green function in 

reference medium
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Pros and Cons

• excellent if perturbations are small and isolated

• but

– assumes Green function known exactly

– assumes perturbation has little effect on Green function

• what if Green function is approximate?

• in general, how do we choose choose perturbation?

• what if perturbations are extensive -

how are ray results perturbed?
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The Ray Theory Approximation in the 
Born Volume 
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Ray Theory -
an Approximate Green function
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Born Kernel for Travel Time

L. Zhao, T.H. Jordan and C.H. Chapman, 2000.

Three-dimensional Frechet differential kernels for seismic delay times,

Geophys. J. Intl., 141, 558-576.
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• Born scattering is second derivative of incident pulse

• on-ray scattering, pulse only distorted, not delayed

• traveltime perturbation is due to perturbations off the ray (within 
Fresnel zone), integrating laterally to give first derivative of incident 
pulse

Point Perturbation On and Off Ray
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Born Scattering Theory for Modelling

• efficient in time domain

• efficient for small isolated scatterers

• intuitively not physical for extended scatterers

– scattering should be from gradients not perturbations

• only models travel time correction as

for extended scatterers
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Born Scattering Dichotomy

• for an extended perturbation, the Born approximation

must correct travel times, plus model scattering from

edges of perturbation

• it gives a perturbation

which at high frequencies is a very poor approximation

• if the perturbation is halved, 

the travel-time error is reduced, but the scattered signal from the edges 

is also reduced!
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ABAAP usxIu ρωδρω 22 )( +−−−=∇−

Generalized Born Scattering

• suppose       and       are not exact solutions in model

• error in equation of motion

• similarly in constitutive equation error is

• note these are definitions of errors not differential equations 

AP A
u A

• recall wave equation with perturbation
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• modifed equaton of motion and constitutive equation

• where

Generalized Born Scattering

NAAP EEEE+−−−=∇− )(2
sxIu δρω
error + perturbation

HAA Pk E+−=∇ u. similarly

ABAN
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Generalized Born Scattering

• standard Born scattering (perturbations are sources)

• generalized Born scattering (errors+perturbations are 

sources)
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Generalized Born Approximation
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Generalized Born Approximation
time domain
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Generalized Born Approximation

• acoustic scattering kernel
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Generalized Born Approximation

( ) ( )

( ) ( )SRSR

SR
S

R
SR

Zln.ˆˆ
4

1

ˆˆ.ln
4

1ˆˆ.
4

1
),,(

TT

T

T

∇+=

−







∇−+







 ∇−∇=Γ

gg

ggggsrx
Z

ZE

• scalar ray acoustic scattering kernel

using energy conservation ( ) 0. 2 =∇ gT



‘2D’ Profile in French Model

French, 1974



Born Perturbation in French Model
– volume scattering from model perturbation
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Born Error in French Model
– volume scattering from ray theory errors
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Elastic Generalized Born

• just as acoustic generalized Born except

and

are more complicated
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Generalized Born Approximation

• references

– C.H. Chapman and R.T. Coates, 1994.

Generalized Born scattering in anisotropic media, 

Wave Motion, 19, 309-341.

– R.T.Coates and C.H.Chapman, 1991.

Generalized Born scattering of elastic waves in 3-D media,

Geophys.J.Int.,107, 231-263.

– C.H.Chapman, 2004.

Fundamentals of Seismic Wave Propagation,

Cambridge University Press.



cf. Transformed Wave Equation in 1D Model

1D differential wave equation

in                     domain

variables 

eigen-equation (U/D separation) 

vertical delay time 
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• to understand generalized Born

• to investigate the inverse problem



Bremmer Coupling Equations
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Differential Coupling Coefficients
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• 1D Bremmer iterative solution

– H. Bremmer, 1949
Terrestrial Radio Waves
Elsevier Publishing Company, p. 159

– J.G.J. Scholte, 1962
Oblique propagation of waves in inhomogeneous media
Geophys. J.R. astr. Soc., 7, 244-261



1D Inverse Problem

• classic solutions

– Gel’fand & Levitan (1951), Marchenko (1955), Gopinath-Sondhi (1971), 

Blagoveschenskiy (1978), …

(R. Burridge, 1980.  The Gelfand-Levitan, the Marchenko, and the Gopinath-

Sondhi integral equation of inverse scattering theory, regarded in the context of 

inverse-reponse problems, Wave Motion, 2, 305-323)

• K. Bube and R. Burridge, 1982.  The one-dimensional inverse 
problem of reflection seismology, SIAM Rev., 25, 497-559.
– downward propagate wave variables

– causal point gives reflected wave 

– ratio of components of wave variables gives

material properties

w
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1D Inverse Problem – Bailey’s method

• R.C. Bailey, 1970.  Some inverse problems in geophysics, Ph.D. 
thesis, Cambridge University.

– N.D. Bregman, C.H. Chapman and R.C. Bailey, 1985.  A non-iterative 

procedure for inverting plane-wave reflection data at several angles of incidence 

using the Ricatti Equation,

Geophys. Prosp., 33, 185-200.

• downward propagate reflectivity 

• causal point gives differential reflection coefficient

• ray continuation
• downward propagate ray amplitudes

• causal point gives differential reflection coefficient

21 rrR =
Aγ

r
Aγ



Ricatti Reflectivity Equation
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Differential Coupling Coefficients
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Generalized Born v. 1D Bremmer
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at reflection point use
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Generalized Born v. 1D Bremmer
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Generalized Born v. 1D Bremmer
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Generalized Born v. 1D Bremmer
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Conclusions – Perturbation Born

• standard perturbation Born provides the

Fréchet differential kernel

• standard perturbation Born scattering theory is suitable for

small, isolated perturbations

• it describes the travel-time differential kernel,

which is zero on the ray path
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Conclusions – Error Born
• generalized error Born scattering theory is needed for extended 

scatterers

• generalized Born models reflections from gradients as in the 1D 

Bremmer method

• forms foundation for inverse theory a la 1D exact inverse methods

– invert for parameter gradients

– proceed as generalized Radon transform inversion except inverting for 

parameter gradients not parameters, with curl-free constraint

(R. Burridge, M.V. de Hoop, D. Miller and C. Spencer, 1998.

Multiparameter inversion in anisotropic media,

Geophys. J. Int., 134, 757-777)


