
Problems associated with the Probability Hypothesis Density Function
approach for  multi−target tracking

The problem of tracking and identifying multiple manuevering objects from a
diverse collection of sensors has been a well studied problem for the past
20 years.

In general, we say that there is a finite set X of targets.  At time step k,
sensors generate a collection of (noisy) observations Z_k.  Most standard
approaches to this problem estimate X using a finite set of "tracks" X_k.
(Each track typically contains additional information such as covariance
estimates for the parameters of X_k).  These standard approaches then must
associate observations from Z_k with elements of their track set X_k, and
then treat the problem as a single target tracking problem.  Such approaches
generally perform poorly in situations where there are a large number of
objects close to one another.

Recently a new approach to this problem has been proposed, it is called the
Probability Hypothesis Density Function (PHD).  Essentially, the PHD
approximates the true multi−target filtering densities with a Poisson point
process (PPP) whose intensity measure $\mu$ has the property that for any
set $A$, $\mu(A)$ is equal to the expected number of targets in $A$.  One
significant advantage to this approach is that it avoids the association
step.

To implement the PHD, we have been using a particle system based approach.
Recently particle systems have gathered quite an avid following as a
computationally tractable and mathematically defensible means for solving
nonlinear−filtering problems.  Particle systems approximate the probability
densities propagated by the nonlinear filtering equations using empirical
distributions consisting of some finite number of particles.  As such the
proofs for such systems are conceptually similar to proofs for Monte Carlo
integration and as such are straight forward, moreover the models are
conceptually simple and straight forward to program.  The formulation of a
PHD is very similar to standard nonlinear−filtering problems and we have
proven that minor extensions of these algorithms solve the PHD problem as
well.

[aside.  In our work, we always assume time is discrete, and state is a
Cartesian product of a discrete space, with a d dimensional Euclidean
space.]

In this workshop, we will focus on two problems of interest to us with
regards to PHD.  (And will bring a collection of additional problems which
we are interested in.)  We will provide a brief overview of Finite Set



Statistics (FISST) a unified mathematical framework for multi−target
tracking developed by Dr. Ron Mahler of Lockheed Martin.  We will then
describe the PHD in more detail, and show how it approximates the true
multi−target density functions.  Finally we will cover the proofs of
correctness for the PHD implementation.

The two specific problems that we will attack in the workshop are:

− While we can show our particle system approximations converge as the
number of particles tends to infinity, what can we say about their error as
a function of the number of particles N?  In particular can we say anything
about the error for small N.  (Most error results we know of for such
systems are asymptotic, and say nothing about smaller values of N.)

− Given a Poisson Point Process that estimates our target state, what is the
best means by which to compute an estimate of that state to communicate to
an end user?  (An end user is not interested in seeing a Poisson point
process density function, they want to know how many targets there are, and
where they are.)  What kinds of confidence can we place on our results which
we can also convey to the end user?

Other problems of specific interest to us include:

− Our framework currently assumes observations are discrete.  (i.e. Z is a
finite set.)  What if Z is a continuous function?  Can our framework be
extended to encompass that kind of observation?

− A standard problem in filtering is prediction and smoothing.  Prediction
estimates the state of the system at some point in the future.  Smoothing
takes multiple observations, and creates a better estimate of some time t in
the past.  At present, we have no way to perform smoothing using the PHD.
Can this be accomplished?

− A related question: can we extend the PHD to filter on path space, instead
of just state space?

− Based on our error estimates, are there particle propagation & resampling
strategies that provably minimize errors?  Most results in this area for
standard nonlinear filtering minimize "single step" errors, is there a way
in which long term errors can be minimized?

− Do general Large Deviation principles exist for our the PHD particle
systems?  We’ re not interested in sharp rate functions, just reasonable
lower bounds.


