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1 Introduction

So-called volatility swaps have become popular in the over-the-counter market. Also, the so-called correlation
swaps have become available. It has been pointed out that although participants talk of volatility and
correlation swaps, it is in fact variance and covariance swaps that have the more fundamental significance.
The complexity of pricing volatility and correlation swaps involves how to determine the dynamics of diffusion
processes of underlying rates. However, here we only consider a less-advanced (or simpler) case. Suppose we
are only interested in swaps involving the so-called pseudo-statistics, namely the pseudo-variance, -covariance,
-volatility, and -correlation. We would like to find analytical close form solutions or approximations.

This brief query note on pricing pseudo-variance, -covariance, -volatility, and -correlation swaps is based
on the following papers:
[1] K. Demeterfi, E. Derman, M. Kamal, and J. Zou, “A guide to volatility and variance swaps”, The Journal
of Derivatives, Summer, 1999, pp. 9-32.
[2] O. Brockhaus and D. Long, “Volatility swaps made simple”, Risk, January, 2000, pp. 92-95.

2 Variance and Covariance Swaps

Let S be a strictly positive underlying rate which follows an Ito process as below

dS;

?:,utdt-l-atth, t>0, S()>0, (1)
t

or equivalently

dlnSt:mtdt+otth, t>0, (2)

ot
my = Mt_? .

The basic assumption we impose on the drift term g and the diffusion term o is that In S given by (2) is a

where

L?-semi-martingale with the local-martingale part given by the second term on the right side of (2).

2.1 Variance Swaps — Definitions and Assumptions

For any 0 < Ty < T, which are respectively called the observation-start time point and the observation-end

time point, define

1 Te
E(QS)(TS’Te) = Te _ TS /7" 0-72' dT’ (3)

which is called a realized volatility-square over an observation period of [Ty, Te]. It is also easy to see that

(3) can be equivalently defined by

oty = —2 ([ Las, 1S (4)
(5)\£ss e _Te_Ts " A s nST .
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On the other hand, the concept of the realized volatility-square is closely related to the quadratic variation

process of a L2-semi-martingale. Clearly, we have
(T. - 1) 2% (T}, T.) = [In S]r, — [l Sz, , (5)
where [-] is the operator of the quadratic variation. If the local martingale part of In S is martingale, then
Eo [(Te - T0) 52 (T:, To) | = Varo n S1.] - Varo [ln Sr.] , (6)

where Eg[-] and Varp[-] are expectation and variance operators, respectively. Further, if o is deterministic

and Ty = 0, then, (6) simply becomes
T. %5 (0,T) = Varg [In S7.] . (7)

A so-called variance forward contract of the underlying rate S, which is also called a variance swap, is
defined as a forward contract with one unit of notional principal, a given maturity of 7' > 0, an observation
period of [Ty, T,] (0 < Ts < Te < T'), a strike of ¥%, and a long-short index of I (1 for long and —1 for short)
such that the matured payoff of the contract, denoted by Viar(T'), is given by

Var (T) = avar - I+ [ 5 (T3, T) = T3] (8)

where ay,r 18 a converting parameter such as $1 per volatility-square.
Let us first assume that there exists some numeraire pair (IN, N) where IN is the equivalent martingale
measure with respect to the numeraire process N. Then the initial value of the contract, denoted by Via,(0),

can be given by

N,
Vvar(o) = Quar-I- Eg\I |:N_;)’ (2(25) (TS7Te) - EI2():|
— QeI EN [NO (2(25) (Ty, To) — 212() EN [N;l]}
_ I EN No (5o 2
= Qyar- I El {df(Te,T) Ny (E(S)(Ts,Te) ZK)] , 9)

where EN[] is the expectation operator under the measure of IN and df(-,-) is the zero-coupon bond price.
We then assume that df (7%, T) - N - NT_: is independent of E(QS) (Ts,Te). Then (9) can be written as

N,

Viar (0) = s - T -ENY [df(Te,T)—O} B [2%(T, To) - TF] - (10)
Nr,

If we further assume that the numeraire process Ny can be given by the zero-coupon bond price as

then (10) becomes
Viar (0) = avar - T-df(0,7) - (EY [52)(T, T0)| - Z%) - (12)

Therefore, pricing the variance swap reduces to calculating the expectation of the realized volatility-square.



2.2 Covariance Swaps — Definitions and Assumptions

Now let S™) and S be two strictly positive Ito’s processes given by (1) with p(® and ¢ for i = 1,2, i.e.,

dln S =m{ dat + oV aw? | t>o0, (13)
where
(i o o
N
and
[dW ™), dw )], = pdt (14)

in which, [-,] is the quadratic co-variation operator. Here, . o and p are such that the basic assumption

is valid for In S, i = 1,2, and
In SO, 1n 5] = [ / oD awV, / ol th‘Q)] :

For any 0 < Ty < Tg, define

1
2(25(1),5(2))(TS,T6) =77 <{1n5(1),ln5(2)] — [lnS(l),lnS@)]T) . (15)

Te
For the time being, let us call it a realized volatility-cross over an observation period of [Ty, Te]. If the local

martingale parts of In S(") and In S® are martingale, then we have

Eo [(Te - TS)E(QS(U’S(Q))(TS,Te)] = Covy [m S n sg?j] ~ Covo [m S n sgi?] : (16)

where Covgl[-, -] is the co-variance operators. Further, if ¢(1), o(?)

and p are deterministic and T = 0, then,
(16) simply becomes

Te 5250, g, (0,T2) = Covy [m St In 5523] . (17)

A so-called covariance forward contract of the underlying rates S(") and S, which is also called a
covariance swap, is defined as a forward contract with one unit of notional principal, a given maturity of
T > 0, an observation period of [T, T,] (0 < Ty < Te < T), a strike of £Z, and a long-short index of I such
that the matured payoff of the contract, denoted by Veoy (T'), is given by

Veov(T) = acoy - I - [2(25(1),5(2))(Ts,Te) - Ef( ) (18)

where oy is a converting parameter such as $1 per volatility-cross.

Pricing a covariance swap can be reduced to pricing a variance swap. Let us elaberate. Let us introduce
o1 (0) = (0") £2p10" 0" + (/7). (19)

Applying Levi-Kunita-Watanabe Theorem, one can prove that the local martingale process W (£) which is
defined by

A = — (o aw xo aw®) . Wi =0, (20)

o:(t)



is a standard Wiener process. Thus we have
dIn (St(l) : S§2>) = (m® +m®)dt + oy () dW D, (21)
dln (s§1>/5§2>) = (mW —m®)dt +o_(t)dw . (22)
We also know that
1
(1) 2| = — 1) . g2 _ (1) /g(2)
s3] = ([ (5 -59)], - (5759)] )

Therefore, we have

1
D s (T T) = 7 (Zsonr. g0 (T Te) = Sy ) (B T2 ) - (23)

With the same argument made in pricing variance swaps, we see that if Ny = df(¢,7T") is a numeraire

process, then the initial value of the covariance swap, denoted by Vo (0), can be given by

1
Veor(0) = - atcow - T+ df(0,T) - (BB [0, g (Tos To)]| = BB [y s (T To)] = 45R) - (24)

2.3 The Expectations of Realized Volatility-square and Volatility-cross

From the analysis provided in the pervious sections, pricing a variance or covariance swap is equivalent to
calculating the expectation of the realized volatility-square of a rate. It has been proved that the expectation
of a realized volatility-square can be evaluated in a diffusion-model-independent way and the variance swap

can be replicated by a portfolio of vanilla options, forward contracts and zero-coupond bonds.

3 Pseudo-Variance and Pseudo-Covariance Swaps

The realized volatility-square defined in the above is continuously sampled over a continuum interval [T, T4].
Here we want to consider discretized sampling cases. For given 0 < Ty < T, and an integer n > 1, we are

given a finite observation time point set

Ts=to<t1 < - <tp="Te.

For each i = 1,---,n, we define the log-return for the underlying rate S as
Xi:ln(Sti/Sti_l) , z:l,,n (25)
Define
. n 1 n _ _ 1 n
ey (s Ty, Te) = T.-T. (n 3 > (X Xn)2> , Xn =— > X, (26)
i=1 i=1
which may be called the realized pseudo-volatility-square, and
= n 1 n 1 — 2 _
ZsmsonmToT) = 7 (m > (- xi) () - X,@))
i=1
L (¢ &2
= 7 (2(5(1).5(2))(n§Ts,Te) - 2(5(1)/5(2))(n§Ts,Te)) , (27)



which may be called the realized pseudo-volatility-cross. In the similar way, we may define variance and
covariance swaps which are respectively related to the realized pseudo-volatility-square and pseudo-volatility-
Cross.

Without the loss of generality, it suffices to consider variance swaps. Strictly speaking, a variance swap
is the derivative whose underlying driving force is given by the difussion process of a given rate. Let us
consider a less-advanced case. Suppose that the underlying rate process S is given by (1) in which u and
o are deterministic functions of ¢t and S;. In this case, we call a variance swap of the realized pseudo-
volatility-square given by (26) a pseudo-variance swap. In a similar way, we may define a pseudo-covariance
swap. Actually, a pseudo-variance swap of the underlying rate S is a forward contract with non-linear

path-dependent payoff related to S.

3.1 Price Pseudo-Variance and Pseudo-Covariance Swaps

Under the same pricing framework mentioned before, pricing a pseudo-variance swap is also equivalent to
evaluating the expectation of the realized pseudo-volatility-square. Since the model of the underlying rate is
given, we can always use Monte-Carlo simulation approach to get the approximate value of the expectation.
However, that is not the way we would like to use. Hence, here is our first question.

Question 1

Let p and o be deterministic functions of ¢ only. For any given n > 1, what is the close form solution or
approximation of

EN ﬁ(QS) (n;Ts, Te)| ?

3.2 Price Pseudo-Volatility and Pseudo-Correlation Swaps

Pseudo-volatility and pseudo-correlation swaps can be considered as the secondary products of the pseudo-

variance swaps. Let us define

&(S)(n§TS7Te) =/ 22

(S) (n; Ts, Te) (28)

which can be called the realized pseudo-volatility. Let us introduce the following notations.

Ay
Ay

n = ﬁ?s(l))(n;TsaTe) )

n = ZA‘?S(Z))(n;TsaTe) )

Ap(n) = ﬁ‘?gm.s@))(”;Ts,Te),

(
(
(
(n) = ﬁ?g(m/s@))(n; 15, Te) -

)
)
)
A1/2 n)
Then we define

st sion (3 oy T) = 1 Aiz(n) — Ayp(n) (33)

T4 /A () As(n)

which can be called the realized pseudo-correlation.



A so-called pseudo-volatility forward contract of the underlying rate S, which is also called a pseudo-
volatility swap, is defined as a forward contract with one unit of notional principal, a given maturity of
T > 0, n + 1 observation times of Ty = tg < t; < --- < t, = Te < T, a strike of ok, and a long-short index
of I such that the matured payoff of the contract, denoted by Vi1 (T), is given by

VVOI(T) = Qyol - I - [&(S) (TSaTe) - UK] ; (34)

where ayo is a converting parameter such as $1 per volatility. Similarly, a so-called pseudo-correlation
forward contract of two underlying rates S(!) and S(®)| which is also called a pseudo-correlation swap, is
defined as a forward contract with one unit of notional principal, a given maturity of T > 0, n+1 observation
times of Ty, = tg < t1 < -+- < t, =T < T, a strike of pk, and a long-short index of I such that the matured
payoff of the contract, denoted by Veor (T'), is given by

V;:orr(T) = acorr * I - [ﬁ(s(l),S(Z))(TSaTe) - pK] ) (35)

where acoprr 18 a converting parameter such as $1 per correlation.

With the same arguments, pricing a pseudo-volatility swap and pseudo-correlation swap are respectively
equivalent to evaluating the expectations of the realized pseudo-volatility and the realized pseudo-correlation.
The pseudo-volatility (s)(n;Ts, Te) is the non-linear function of ZA'ES) (n;Ts,Te) (see (28)), and the pseudo-
correlation /3(5(1)75(2))(n;Ts,Te) is the non-linear function of Ay, Az, A2, and A;/, (see (33)). To get
second-order approximations of the expectations by using Taylor expansion of the functions, we need to
calculate some variances and covariances. Thus, we have the following two questions.

Question 2 Let p and o be deterministic functions of ¢ only. For any given n > 1, what is the close form
solution or approximation of

Varg® ﬁ(QS) (n; Ty, Te)| ?

Question 3 Let u(9, ¢() and p be deterministic functions of ¢ only, i = 1,2. For any given n > 1, what are

the close form solutions or approximations of

Covp' [A1(n), Ax(n)] ?
Covp [A1(n), A12(n)] ?
Covg' [A1(n), A1 2(n)] ?
Covp' [Ay



