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Abstract 
A disk drive contains a large number of fixed-sized blocks that can hold data. We can 
choose to map a given collection of data records to these blocks in many ways, but differ-
ent data layouts will result in different disk performance. This paper presents a series of 
increasingly accurate models of disk drives and their performance, and poses the open 
question of how to find “good” layouts in practice. 

Introduction 
Computers use both RAM1 and disks2 to store data. RAM operates completely electroni-
cally while disks are largely mechanical in nature. RAM is much faster than disks, but 
disks can typically hold much more data.3 The cost of accessing data in RAM is largely 
independent of its layout in RAM,4 while the cost of accessing data on a disk depends 
quite strongly on its layout. 

Let’s be concrete. A typical new desktop computer in late 2001 might have 128MB of 
RAM and 40GB of disk.5 Each disk block holds 512 bytes, so the disk contains about 80 
million blocks. (We note empirically that disks on desktop computers are about 50% full; 
there are about half as many data blocks as disk blocks.) The processor can read a 512-
byte data record from RAM in about 4 microseconds, while reading a data record from 
disk might have a latency of between 2 millisecond and 20 milliseconds, depending on 
the layout of the data records on disk; the slowdown is between 500× and 5,000×. 
Choosing a good layout can therefore, in principle, speed up disk reads by up to 10× 
over a bad layout.6 This is important because disks are often the performance bottleneck 
for the users of desktop computers. 

A simple disk model 
One very simple way to model a disk is as a one-dimensional array of fixed-sized blocks, 
as shown in Figure 1. The blocks are numbered B0, B1, B2, …, and the data records to be 
stored are numbered D0, D1, D2, …. Each block holds zero or one data records; each data 

                                                 
1 “Random-Access Memory,” usually implemented using integrated circuitry. 
2 Disks are also called “disk drives” or “hard drives.” 
3 RAM is also volatile, meaning that its contents disappear when powered off, while disks are nonvolatile. 
All data that is intended to be persistent must be stored on disk. 
4 This is true only for a uniform store of RAM. Most computers have multiple levels of RAM-like memory, 
with smaller, faster “caches” complementing the “main memory.” Allowing the proper distribution of data 
among these multiple levels is itself a largely open problem. 
5 A megabyte is a million (106 or 220) bytes, and a gigabyte is a billion (109 or 230) bytes. In this paper, a 
byte is a collection of 8 bits. 
6 In fact, the speedup can be much greater due to the use of track buffers, as described later in this paper. 
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record must reside in at least one disk block. (The number of data records does not ex-
ceed the number of disk blocks.) The disk has a single head that may be moved among 
the blocks;7 here the head is shown positioned at block B2. 

head

D0 D3 D1 D2

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9

...

Figure 1. A one-dimensional array of fixed-sized blocks.  
A trace is a sequence of references (reads or writes) to data records or to disk blocks. For 
example, D0 D1 D2 D3 is a data trace, corresponding here uniquely to the disk trace B1 B4 
B6 B3. 

Executing a trace (or executing the computer software that produces the trace) requires 
moving the head to each of the disk blocks named, in turn. For initial simplicity, let us 
assume that the cost of accessing a block equals the minimum number of unit steps that 
the head must travel.8 The cost of executing this trace is therefore 9 steps for the data lay-
out and initial head position shown above. 

For a given trace or a stochastic process that generates possible traces, the best layouts 
are those that minimize the (expected) time required to execute a trace, or perhaps those 
that also reduce the variance in the presence of uncertainty. Finding the best layouts may 
be intractable, and so we are also interested in the problem of finding a “good” layout, or 
at least avoiding “bad” layouts. Although many heuristics have been developed over the 
years to avoid particularly bad layouts, these have no particular foundation in theory, and 
so new layout strategies with a strong theoretical foundation are of particular interest.  

Simplifications 
If we use the simple model above, a few simple results are obvious. 

We note that data records should always be packed contiguously on the disk; there should 
be no holes since holes never improve the performance of a trace.9 If no data record is to 
appear on disk more than once, the layout problem then reduces to finding an optimal 
permutation of the data records.10 

A further simplification is possible if we note that data records usually constitute files, 
with each file containing a sequence of data records. Each data record is contained in at 

                                                 
7 Moving the head is also called “seeking” the head. 
8 If this were in fact the case, the ratio between the worst-case and best-case read times would clearly ex-
ceed the 10:1 ratio described above for real disks. 
9 Of course, the presence of holes may help in the future allocation of new disk blocks that are close to ex-
isting blocks. 
10 While replicating data records on disk can speed up reading, it can slow down writing those records. 
More disk blocks must be updated, and additional information must be stored on disk during these updates 
so that the disk can be restored to a consistent state following an ill-timed system failure. The right replica-
tion policy therefore depends on the ratio of reads to writes. 
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most one file, and appears in that file only once. If files are always accessed sequentially 
and in their entirety, with no intervening accesses to other data records, then files should 
clearly be laid out contiguously on disk. Programs called disk defragmenters rearrange 
data records on disk so that each file is contiguous, with no holes or few holes between 
data records.11 Some disk defragmenters also try to place related files near each other, 
usually based on simple static structure rather than a dynamic analysis of the accesses.12 

If there is only one trace to optimize for, and the length of the trace does not exceed the 
number of blocks on the disk, then the layout of data records on the disk should follow 
the order in the trace. For the trace D0 D1 D2 D3, the optimal data layout is as shown in 
Figure 2; the cost of executing the trace is now just 3 steps. 

D0 D3D1 D2

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9

...

Figure 2. An optimal data layout for one trace.  
This simple result, of course, does not apply if more than one trace is possible. For exam-
ple, if the traces D0 D1 D2 D3 and D3 D1 D4 D1 D5 D9 are equally likely, and the initial 
head position is still at block B2, an optimal disk layout is shown in Figure 3.13 The ex-
pected execution time is now 6½ steps. 

D0 D3 D1D2

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9

...

Figure 3. An optimal data layout for two equally likely traces.

D5 D9D4

 
Even with this simple disk model and performance model, finding an optimal layout 
might be intractable in the general case. It would therefore be useful to understand how to 
find a good layout for a given set of data records and a given class of traces. It would also 
be useful to understand the limits of such an analysis. 

Complexities 
The disk layout problem as stated is perhaps complex enough, but we list here a number 
of further complexities, some of which might enrich possible solutions. 

                                                 
11 An alternative to using a disk defragmenter is to adopt an online strategy for file placement that avoids 
fragmentation. This is difficult because files often grow after they are first allocated, and the additional disk 
records cannot always follow the original records. 
12 Files are typically organized into collections denoted by directories; directories can also include other 
directories. Like files, directories are represented by a number of data records held in disk blocks. File allo-
cators and disk defragmenters sometimes try to keep directories and the files they contain close to each 
other on disk because of access patterns that are known to be typical. 
13 This particular example disk layout was discovered using exhaustive search, which is not practical in 
general. 
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Observing traces 
Although we spoke above of a stochastic process generating possible traces, we generally 
do not have direct knowledge of that process to work with. Instead, we can merely ob-
serve some number of actual traces, and possibly reason further about common future 
access patterns based on our knowledge of the software and its users.14 

One approach might be to use a number of observed traces to build a simple model of 
common traces or subtraces, and then to use that model to find good layouts. An alterna-
tive might be to use the observed traces directly to find good layouts. 

One added complexity is that the computer may be running several independent programs 
concurrently, and the different traces for different programs may be nondeterministically 
interspersed. The layout algorithm should not be overly sensitive to such possible nonde-
terminism. 

Multiple outstanding requests 
Our model so far has been that disk accesses must be performed according to some total 
ordering. We might relax this to a partial ordering. For example, we might say that at any 
moment there can be multiple disk accesses outstanding, which may be executed in any 
convenient order. If multiple independent programs on the computer wish to access the 
disk, the order in which these accesses are executed might not be important, and some 
orders might perform better than others. Similarly, if we wish to read a file in its entirety, 
the order in which its data records are read might not matter.  

A known good dynamic heuristic, for a given disk layout, is to reorder outstanding access 
requests so that the disk head seldom changes its direction of travel. It might be possible 
to choose a disk layout that interacts especially well with this heuristic. 

Read-ahead 
At any point in time, it can be useful to guess what future disk reads may occur, and per-
form the reads before they are requested. For example, if we read the first data record of a 
file, we might expect that the second record will soon be read. Reading it now can obvi-
ously make sense if the disk is otherwise idle, or if the incremental cost of doing so is 
very small. 

Again, it may be possible to choose a disk layout that interacts especially well with dy-
namic read-ahead. Moreover, the same predictive information that is used for disk layout 
might be used to direct read-ahead. 

Caching data records in RAM 
If the same data records are frequently read from disk, it can be advantageous to keep 
copies of these records in RAM. One implementation is to retain the k most recently used 

                                                 
14 For example, we might know that a program has a lengthy initialization phase followed by an interactive 
phase driven by user inputs. If the initialization phase is completely or largely independent of user input, it 
might make sense to optimize for it separately. In fact, a reasonable heuristic might be to optimize disk 
layout solely on the initialization trace, since the user might be much less sensitive to disk performance 
during the interactive phase following. 
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data records, avoiding the need to reread them. There may be disk layouts that interact 
particularly well with such a dynamic caching policy. 

Online layout 
A data layout algorithm might operate in a batch mode, working with a number of traces 
that have already been collected, or it might operate in an online mode, where it makes 
incremental adjustments to the disk layout based on limited memory of recent accesses. 
One simple strategy might be, whenever moving the head from Bi to Bj (assume i < j - 1), 
to swap the contents of Bj and Bj-1, thereby moving the requested data records closer to-
gether. 

This example algorithm has several obvious bad properties,15 but other online algorithms 
may be able to improve disk layout continuously. This is especially important if access 
patterns change over time, since online algorithms could immediately begin to make im-
provements. 

3-D geometry 
While we have modeled disks as one-dimensional arrays of blocks, the truth is that real 
disks have a 3-D geometry. 

A disk contains a small number of 2-D platters (typically 1–5) stacked on a central spin-
dle. Each platter is a disk with blocks on both sides (“surfaces”) and holds about 20GB. 
The disks rotate together at high speed, typically completing a rotation in about 8 milli-
seconds. 

Each surface has tens of thousands of concentric circular tracks; a given distance from the 
center defines a “cylinder” of tracks from among all the surfaces. An assembly of heads, 
one per surface, moves in unison along a radius.16 The heads can be moved to any cylin-
der. A head movement takes up to 15 milliseconds.17 

(It is also increasingly common for multiple disks to be ganged together in configurations 
where data records can be laid out across the disks. This effectively increases the number 
of independent disk head assemblies, and can lead to improved performance or reliability. 
Such configurations are however not yet common in desktop computers.) 

Each track is further subdivided into blocks.18 Once the head assembly is positioned, 
there is a brief rotational latency until the desired block rotates past the head, at which 
time the block is accessed. The access time for a block includes the variable head-
movement latency, plus a variable rotational latency (0–8 milliseconds), plus smaller 
fixed costs. 

                                                 
15 For example, it adds two reads and two writes to every disk access, even without counting the extra 
writes required to recover in case of a system failure after the first write but before the second. Moreover, it 
is not clear that this algorithm converges to an especially good layout. 
16 Actually, along a curved path close to a radius. 
17 The head assembly accelerates and decelerates at a constant acceleration, up to a maximum velocity. 
There is also a fixed period following a head movement for the heads to settle into their final position. One 
head is active at once and switching heads also involves a small settling period. 
18 These blocks are also called sectors. 
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Accessing sequential blocks on the same track was clumsy on early disks, since the sec-
ond block would often have rotated past the head before the software could request it. 
Modern disks contain electronic track buffers that can hold a large number of blocks, and 
the blocks that pass the heads following a read are automatically cached into the track 
buffer to satisfy future read requests. 

Because the circumference of the tracks varies, there are more disk blocks on the outside 
tracks than on the inside tracks; the ratio is approximately 2:1. Disk accesses are faster on 
the outer tracks because more blocks pass the heads every second,19 and because the 
greater capacity makes it less often necessary to move the heads. 

As a final complication, the actual disk geometry is usually not exposed to the computer, 
which sees only a simplified geometry. This is for reasons of backward compatibility, 
and also allows the disk to automatically remap faulty disk blocks without the involve-
ment of the software. The outlines of the actual disk geometry can be determined experi-
mentally but the details possibly cannot. 

Summary 
The layout of data on disk drives can greatly affect the performance of data access. A 
simple model of disk performance leads to a simple combinatorial view of data layout, 
although our model becomes more complex as we model the performance and geometry 
of real disk drives with increasing accuracy. 

Because finding an optimal layout may be intractable, and because access patterns 
change over time, we would particularly like to find simple adaptive algorithms that pro-
duce relatively good layouts. 

                                                 
19 When the heads move among the cylinders, the angular velocities of the platters do not change. All sec-
tors have roughly the same density of bits per linear inch. 


