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Plan of the Talk

e Spectral Galerkin and Collocation Schemes.
e Approximation Theory: The Gibbs phenomenon

— The resolution of the Gibbs Phenomenon.
— Application: Splicing of pictures.
— Application: The Direct Fourier Method in Computed Tomography.

e Linear Hyperbolic equations with discontinuous solutions.

— Stability and filtering.

— Recovering spectral accuracy.
e Non linear Hyperbolic Equations:

— The Spectral Viscosity Method
— The Super Viscosity Methods and its relationship to filtering.



Plan of the Talk (Cont.)

e Applications:
— The Leblanc Problem.

— Interactions of shock waves and hydrogen jets in reactive flows.
— Recessed cavity flameholders.

— Richtmyer-Meshkov instabilities.



Spectral Methods - Introduction

The solution of an equation is assumed to be in a space By spanned by smooth

e For periodic problems
qsk _ eikx

e for non-periodic problems in finite intervals

— Either
o = Ti(z)
where T} are the Chebyshev polynomials.
— Or
¢r = Li(z)

where Lj are the Legendre polynomials.



Spectral Methods - Introduction (Cont.)

The approximation is obtained in one of two ways:

e Galerkin projection:

PyF(z) = 3 (F, éx)éu(x)

where

(F, ¢r) = /w<f'7)F(33)¢k(95) dz



Spectral Methods - Introduction (Cont.)

e The Pseudo-spectral approximation

InF(z) = ]XV: (F, ox) N i ()

k=0

where
(F, )y = % Wi (2) i ()

— x; and w; are the Gauss-Lobatto Quadrature nodes and weights respec
— Thus

[ f(@)w()ds = ]ZV% wif () e(:)

when f(x) is a polynomial or trigonometrical polynomial of degree 2.\



Spectral Methods - Introduction (Cont.)

e Alternatively

N
InF(z) = ;)F(l'z)gz(ﬂ?)
where

— ¢;(z) is a polynomial of degree N such that g;(x;) = 0; 4.

This leads naturally to the formula:

o lnF(ar) = 3 Fwi)gi(zi)
:U ’[,:0

and defines the Differentiation Matrix

D = gi(x)



Approximation Results

F|l
|F—pyp|| < K17
Flls



Approximation Theory

e We assume that
— f(z) is in L?[—1,1];
— there is a subinterval [a,b] C [—1,1] in which f(z) is analytic;

— there exists an orthonormal family {W(x)}, under a scalar product ( -

e Denote

falz) = S (f, ) T(x)

k=0
Jm 1) = ()] = 0
almost everywhere in z € [—1, 1].

e Denote £ = —1 + 27— such that if a < x < bthen —1 < { < 1.



Approximation (Cont.)

Definition:
The two parameters family {®2(£)} is called a Gibbs complementary to t

(a) Orthogonality
< B3(6), B (€) >r= .

(b) Spectral Convergence
The expansion of an analytic function g(£) in the basis ®(£) converges e:

max
—1<€<1

A
9(6) = X < g,%) > @2(5)‘ <et ™ g >

(c) The Gibbs Condition
There exists a number 8 < 1 such that if A = BN then

alN

A
k>N, [<
N ks Nis

< M), Wu(a()) > max [0}(©)] < (

~1<é<1



Approximation (Cont.)

Comments:

e Condition (b) implies that the expansion of a function g in the basis {®;
nentially fast if ¢ is analytic in —1 < & <1 (corresponding to a < z < b)

e Condition (c) states that the projection of {U} for large k on the low mo
small [) is exponentially small in the interval —1 < ¢ < 1.



Approximation (Cont.)

Theorem

e f(z) € L*—1,1] and analytic in [a,b] C [—1,1].
e {U,(z)} is an orthonormal family with the inner product (-, -).

o {D(€)} is a Gibbs complementary to the family {¥;(x)} as defined in (a

Then

A
max [f(z) = 3 < fv, @ >0 B(E(a) <™ g >0



Approximation (Cont.)

Comment:

e Even if we have a slowly converging series

S (f, 0p) Ue(2)

k=0

it is still possible to get a rapidly converging approximation to f(x) if one «
function that yields a rapidly converging series to f as long as the projectic
in the basis {V} on the low modes in the new basis is exponentially s:



Approximation (Cont.)

Examples

e In all the following examples, we choose

(¢) = %C@(&)
k

where C(€) is the Gegenbauer polynomial and A is the normalization f
inner product is defined by

< fog>a= [L(1 = af(€)gle) de

We have to check only if:

[ -erdapenee) i < (4N

fork > N, I <A=0N,0<a<1.



Approximation (Cont.)

Example 1: Fourier Case

1
Ui(x) = éelkm, k| < 0.

We would need to verify that

‘/ § pikma(é )Cz dg‘ (aN) |

fork> N, I<A=0FN,0< a<1.
There is an explicit formula for the integral

1 1, 2\
[, = €t 00N E) de = W) () 0+ N ioa(m

where € = b — a and J,(x) is the Bessel function.
The Gibbs condition is satisfied when
2Te€

5=



Approximation (Cont.)

Example 2: Legendre Case

We need to verify that
1

1

hi;
fork> N, I<A=0N,0< a<1.

[ = b)) dg\ < (

This had been verified.

k



Approximation (Cont.)

Example 3: Gegenbauer Case

We need to verify that
1 1
G a1 - € ataecie de <
k

fork > N,I<A=0N,0< a<l1.



Computer Tomography

We have to recover a density function f(x,y) from its Radon Transform p(r, 6

p(r,0) = /_ozo /_O; f(z,y)d(x cos(0) + ysin(0) — r) dr dy

The Slice Theorem:

p(p,0) = f(pcosb, psin 6)
where
e p is the Fourier Transform (in r) of p,

e f is the two dimensional Fourier Transform of f.
The DFM

p—=p—>f—=f



Linear Hyperbolic Equations

Consider first approximating of

ou _ou
ot  Ox
by the Fourier method.
Denote:
e uy(x) is the PS solution satisfying
3u N
5 (@) = L gi(z)un ()
1=0
o iU; = un(x;).
The PS can be written as
d

Since D is anti-symmetric, stability is assured.



The variable coefficient case

Consider now
W _ )2V
ot ox

e The matrix AD is not skew symmetric.
How to stabilize?

e Rewrite the equation as

ou _1 ( )a_UJr}aa(x)U_} ( >8_U
ot~ 2"or T2 bz 2\ oy

Doubles the amount of work. Loses conservation.



Linear-Analysis

Analysis:
Write the equation as follows
Ou Ou
TN 7 N
ot va(z) Ox
= N1+ No+ Nj
where
8INCI,UN 8UN>
2N, = A —
! 0x * N(a(x) Ox
Ooun dauy
2Ny = 1 — | -7
2 N (a(:v) Ox ) N o
T
N, — INﬁauN_E? NAUN

Ox 0x



Linear Analysis (Cont.)

Now

(’LLN, Nl’U,N) — 0.

Since AD + DA is skew symmetric.

!/
[(un, Nouy)| < K max |a|(uy, un)

(92P’LLN

|(un, Nsuy)| < (un, (—1)P ey 522 )

where ey ~ N172P



Stability and Filters

Conclusion:

To stabilize the PS method we can write

Consider

Let

Then we have

Thus

= Zya(x)

87,1,]\7 p+1 82puN
R
0Py
i ( 1)p+1€N ax?é\f

= (=1)"en(ik)Pax(t)

ap(t + At) = eV k2pAtak(t) (This is a low pass filter!!!



Stability and Filters (Cont.)

Important:

The dissipation in the Legendre case will be therefore

e



Linear Hyperbolic Equations

Consider the hyperbolic system of the form

oU
— = LU
ot
with initial conditions
Ut=0)=U
e Example: The symmetric hyperbolic system,
ou 4 oU
= 2 A, )

ot i3 ox;



Linear Hyperbolic Equations (Cont.)

Let u be the Fourier Galerkin approximation:

(U—u,eikx):O ~N<EkE<N
(Uy — g, €*) =0 ~N<EkE<N
Theorem
1
1U = ull < K|Uolls 777

This fails for piecewise smooth Uj. This is not surprising since U is not a smoot



Linear Hyperbolic Equations (Cont.)

Theorem
Let ¢ be a smooth function, then

(U(T) —u(T), 8)] < Kdll.y

Proof
We consider the adjoint problem:

with the smooth initial condition:



Linear Hyperbolic Equations (Cont.)

The Green’s identity is derived from

d(U), V(T — 1))

dt = (LU®), V(T —t) — (U®), L'V(T -

So that
(U(T),¢) = (Uy, V(T))

We can also show that

(w(T), pn) = (uo, v(T))

where v is the Galerkin approximation to V.



Linear Hyperbolic Equations (Cont.)

e Since the problem for V' is smooth then

191l
Ns—l

IV(T) —o(T)]| < K

(w0, v(T)) = (Uo, v(T))

(w(T), ¢n) = (u(T), ¢)

Thus
U(T) —u(T),¢) = (U, V(T) —v(T))



Linear Hyperbolic Equations (Cont.)

Comments

e Similar Results are obtained for the collocation (Pseudospectral) method. H
initial condition (ug) has to be the Galerkin approximation to the initial c

e The Fourier coefficients of u approximate those of U with spectral accu
possible to postprocess to get spectral accuracy for the point values.

e Alternatively, define
_1
¢ =31 —1°)""2Cr(n)Cp(€)

for any interval of smoothness, and ¢ vanishes outside.
Then

(u, @) = u(é) with spectral accuracy.



Nonlinear Equations

Consider
oU 0f(U
f ( )

=3
Ot ox

The spectral method is
Oun N OPn f(un)

— 0
ot Oz
The method is unstable (as in the linear case!)
In the Spectral Viscosity Method (SV)
(9uN aPNf(UN) +1 88 85uN
— en(=1)* (1
ot - Oz en(=1) Ozs Oz, ) * Oxs



Nonlinear Equations (Cont.)

Ouy  OPn f(un) _
ot i Oz = en(=

83uN

ox®

)s—l—l

Qulat)»

The operator (), can be expressed in the Fourier space:

~ € Z <Zk>28QAk,&kelkm

m<|k|<N

x(-17 Qe 1)

with

2s — 1
e~ CN* 1 m~ N’ 6< i ; 1—(

In the Super viscosity



Nonlinear Equations (Cont.)

Theorem:
Consider the Fourier Superviscosity method, subject to L™ initial data. The:

uy converges to the entropy solution.

Theorem:
Let uy be the solution of the SV approximation, subject to bounded initial co

[lun(, 0)[zee + €’[[0"un(, 0)[[r2 < Const.

then uy converges strongly to the unique entropy solution.



LeBlanc Problem

The one-dimensional Euler equation

pr+ (pu)z = 0
(pu): + (puu); = 0
B+ ((E + P)U)x =0

with

and v = 1.4.



LeBlanc Problem (Cont.)

The initial condition is the Riemann data :

Density
w'E
ol
w0
) e e S A

L]
[\
Velocity Pres
70000 10° -
60000 [
I 10" -
50000 [
40000 - 10k
30000 |-
N g
20000 [ 10
10000 |-
I 10' -
oF
R £ | 1
1000035 -5 0 10 055 -5
X



LeBlanc Problem (Cont.)

Algorithms :

e Spatial Algorithm :
1. Multi-Domain Chebyshev collocation method (Spectral),

— Differentiation and Smoothing operations are done via an optimized
(Costa & Don);
— a 9'th order exponential filter used to stabilize the scheme.
— Riemann Solver applied at the domain interface.
— The non-oscillatory solutions are obtained by post-processing techni
Gottlieb).
2. WENO fifth order finite difference scheme (WENO) with Lax-Frederick

e Temporal Algorithm :
Third order TVD Runge Kutta method (Shu and Osher).



LeBlanc Problem (Cont.)

Spectral Scheme

Density Velocity Pres

Density, N=512, N,=2 Velocity, N=512, N =2 Pres:
Spectral (mrcles) V8 Exact (Solid) Spectral (cnrcles) vs Exact (Solid) Spec
70000 - 10° -
F 60000 |-
g E 107k _/
[ 50000 |
L 40000 s 10°
I 30000 |-
L I 2l
20000 - 10
8 10000 |-
r b 10
L 0 :_
E L 1 1 | ; - L 1 1 | |
-10 5 0 5 10 10000, -5 0 5 10 10710 5



LeBlanc Problem (Cont.)

Rho

WENO Scheme

Density Velocity Pres

10° -

B 70000 [
L 60000 [
I 50000
F 40000 |-
N —— Analytical o) I
e WENO 5th, N=512 -
B ———— WENO 5th, N=1024 -
| ———— WENO 5th, N=2048 30000 -
F Analytical
B WENO 5th, N=512
- r WENO 5th, N=1024
F 20000 | WENO 5th, N=2048
3 10000 [
L Ll 1L | ok }

-10 -5 0 5 10




Richtmyer-Meshkov Instability

e Shock induced instability of the interface between fluids of different den
Richtmyer and experimented by Meshkov.)

e Growth of the interface amplitude and secondary shear instability promot
lence mixing.

e Applications included but not limited to mixing enhancement and inertial



Richtmyer-Meshkov Instability (Cont.)

The two-dimensional Euler equations,

Q +F,+G,=0.
The state vector Q is

Q = (p, pu, pv, E)" .
The inviscid fluxes F and G are given by

F = (pu, puu + P, puv, (FE + P)u)",
G = (pv, puv, pvv + P,(E + P)v)".

where

P=(y—1)(E~ ;U -U).



Richtmyer-Meshkov Instability (Cont.)

Initial Condition :

w
I
MYOHUS

Computational Domain

9% y=Yoew

O
[y =
o
w
SN

e Hugoniot-Rankine condition f
e Pre-Shock Temperature 7' =
e Pre-Shock Pressure P = 0.5 ¢

e Xenon and Argon density a:
107 L3 and pa, = 0.89 % 10°
at half of the normal atmospk

e Specific heat ratio v = %
e Atwood number At = 5.4
e Mach number M = 4.46
e Wave Length A = 3.6 cm
e Amplitude a = 1.0 cm



Richtmyer-Meshkov Instability (Cont.)

Xenon-Argon interface definition :

S(z,y) =exp(—ald|’) 0<d<1

where

(z; +acos(2my/A) +§) — x

d= 2

e 0 > 0 is the interface thickness,
e 3 = 8 is the interface order,

e o = — In € with € being the machine zero.



Richtmyer-Meshkov Instability (Cont.)

Algorithms :

e Spatial Algorithm :
1. Combined Chebyshev and Fourier collocation method (Spectral),

— Differentiation and Smoothing operations are done via an optimized
(Costa & Don);

— a 10’th and 9'th order exponential filter used for the differentiation an
respectively.

2. WENO fifth order finite difference scheme (WENQO) with Lax-Frederick

3. Symmetry property in y is utilized to reduce the cost of computation.

e Temporal Algorithm :
Third order TVD Runge Kutta method (Shu and Osher).



Richtmyer-Meshkov Instability (Cont.)

Regions of Interest :

N\

7
-

L L L 1 L L L )
1

. Reflected shock gener:

fraction;

. The penetration of th

(Ar) fluid forms the S

. Triple point on the tr:

. A small jet and its vo

Kelvin-Helmholtz inst
stability along the cor
long time simulation;

. The penetration of th

(Xe) fluid forms the F

. Vortical rollups of the



Richtmyer-Meshkov Instability (Cont.)

Convergence Study (M = 4.46,0 = 0.6 cm,t = 50 ps) : Density

Spectral WENO
25k 25
mr R B i mr R B
rho: 1.00E-03 2.84E-03 4.67E-03 6.51E-03 8.35E-03 | rho: 1.00E-03 2.84E-03 4.67E-03 6.51E-03 8.35E-03
2 2

e Grid size for the Spectral and WENO schemes are 1024x512.



Richtmyer-Meshkov Instability (Cont.)

Convergence Study (M = 4.46,0 = 0.6 cm,t = 50 us) : V-Velocity

Spectral WENO
25| 25|
m = i m a1
v: -2.00E+04 -1.18E+04 -3.67E+03 4.49E+03 1.27E+04 | v: -2.00E+04 -1.18E+04 -3.67E+03 4.49E+03 1.27E+0:
2+ 2+

3 il
05 2\2‘7\ ////

e Grid size for the Spectral and WENO schemes are 1024x512.



Richtmyer-Meshkov Instability (Cont.)

Convergence Study (M = 4.46,0 = 0.2 em,t = 50 ps) : Density

Spectral WENO
35F 35F
3 :‘ rho 3 :—
= 9.27E-03 =
25 B A 8.35E-03 25 -
- \ 7.43E-03 -
2F 6.51E-03 2F
- 5.59E-03 - D
15F 4.67E-03 15
- | 3.76E-03 -
1B | 2.84E-03 1B
> = . 1.92E-03 > =
- ‘ 1.00E-03 -
05 | 05F
oF oF
05F 05F
1F 1F
1.5F 15F
-l -l 1
0 5 0 1

e Grid size for the Spectral and WENO schemes are 1024x256 and 1024x51;



Richtmyer-Meshkov Instability (Cont.)

Convergence Study (M = 4.46,0 = 0.2 em,t =50 us) : V-Velocity

Spectral WENO
35F 35F
3f 3f
25F 25F
2 2F _ 2
= u 2
15 15F N I 1
= = 8
- 1F - 1F y 3
u o I -8
05 05 -1
- - i -1
oF o e =
0.5 - 0.5 —
1F 1F
15F 15F
il I L I 1
0 1 0 1 2

e Grid size for the Spectral and WENO schemes are 1024x256 and 1024x51;



Richtmyer-Meshkov Instability (Cont.)

Snapshot of the Density (M = 4.46,6 = 0.2 ¢m) : Spectral Scheme

7]
S ,‘
O‘ |

12.5 us
25.0 ys
31.3 ys
37.5 ps

vi




Richtmyer-Meshkov Instability (Cont.)

Snapshot of the V-Velocity (M = 4.46,0 = 0.2 ecm) : Spectral Sche

12.5 us
25.0 ys




Richtmyer-Meshkov Instability (Cont.)

Snapshot of the Density (M =4.46,6 = 0.2 em) : WENO Scheme

13.0 us
24.7 us
31.5 s




Richtmyer-Meshkov Instability (Cont.)

Snapshot of the V-Velocity (M = 4.46,0 = 0.2 em) : WENO Scher

13.0 us
24.7 us




Richtmyer-Meshkov Instability (Cont.)

Observations :

e Good agreement of the Global large and medium features between the Spe
WENO scheme.

e Some discrepancy of the fine scale vortical structures along the gaseous int
simulations of this sensitive nature to small perturbation (physically and/



Richtmyer-Meshkov Instability (Cont.)

Long time Case (M =4.46,5 = 0.2 cm,t = 124 us) : Density

Spectral WE

]
15 0



Richtmyer-Meshkov Instability (Cont.)

Long time Case (M =4.46,5 = 0.2 cm,t = 124 us) : V-Velocity

Spectral
5| do § S sk
&
2 > |
1 F '%‘b -~ 1k
L
of ") of
E do ¢ E
1 :_ . ‘@Q' 1 :_

WE




Richtmyer-Meshkov Instability (Cont.)

Large Domain Case (M = 4.46,0 = 0.2 em,t = 237 ps) : Spectral sc

Density V-Vi
9 F 9
E | i | [
8 F 8 v: -2.70E+04 -1.64E+04 5.78E+03 4.84E+03 1
TE 7
6 F 6
5 F 5
4 F - 4
3k 3
2k 2
1E 1
oF 0
1 F 1
E 1 . . E . . . . I
0 20 0 10




Richtmyer-Meshkov Instability (Cont.)

High Mach Number (M =8,6 =0.2 ¢m,t =200 us) : Spectral sche

.
Density V-Vi

o o

| o oot Sorcs

7:— 7:—

oF oF

5 F ‘ 5 F

4; > 4;

33 33

2 F ‘ o F

E E

oF of

|

(; 20 (; 10




