Spectral Methods for Discontinuous Probl

David Gottlieb, Wai Sun Don

Division of Applied Mathematics Brown University

Plan of the Talk

- Spectral Galerkin and Collocation Schemes.
- Approximation Theory: The Gibbs phenomenon
 - The resolution of the Gibbs Phenomenon.
 - Application: Splicing of pictures.
 - Application: The Direct Fourier Method in Computed Tomography.
- Linear Hyperbolic equations with discontinuous solutions.
 - Stability and filtering.
 - Recovering spectral accuracy.
- Non linear Hyperbolic Equations:
 - The Spectral Viscosity Method
 - The Super Viscosity Methods and its relationship to filtering.

Plan of the Talk (Cont.)

• Applications:

- The Leblanc Problem.
- Interactions of shock waves and hydrogen jets in reactive flows.
- Recessed cavity flameholders.
- Richtmyer-Meshkov instabilities.

Spectral Methods - Introduction

The solution of an equation is assumed to be in a space $\mathcal{B}_{\mathcal{N}}$ spanned by smooth

• For periodic problems

$$\phi_k = e^{ikx}$$

- for non-periodic problems in finite intervals
 - Either

$$\phi_k = T_k(x)$$

where T_k are the Chebyshev polynomials.

- Or

$$\phi_k = L_k(x)$$

where L_k are the Legendre polynomials.

Spectral Methods - Introduction (Cont.)

The approximation is obtained in one of two ways:

• Galerkin projection:

$$\mathcal{P}_{\mathcal{N}}F(x) = \sum_{k=0}^{N} (F, \phi_k)\phi_k(x)$$

where

$$(F, \phi_k) = \int \omega(x) F(x) \phi_k(x) dx$$

Spectral Methods - Introduction (Cont.)

• The Pseudo-spectral approximation

$$\mathcal{I}_{\mathcal{N}}F(x) = \sum_{k=0}^{N} (F, \phi_k)_N \phi_k(x)$$

where

$$(F, \phi_k)_N = \sum_{i=0}^N \omega_i F(x_i) \phi_k(x_i)$$

- $-x_i$ and ω_i are the Gauss-Lobatto Quadrature nodes and weights respectively.
- Thus

$$\int f(x)\omega(x)dx = \sum_{i=0}^{N} \omega_i f(x_i)\phi_k(x_i)$$

when f(x) is a polynomial or trigonometrical polynomial of degree 2N

Spectral Methods - Introduction (Cont.)

• Alternatively

$$\mathcal{I}_{\mathcal{N}}F(x) = \sum_{i=0}^{N} F(x_i)g_i(x)$$

where

 $-g_i(x)$ is a polynomial of degree N such that $g_i(x_k) = \delta_{i,k}$.

This leads naturally to the formula:

$$\frac{d}{dx}\mathcal{I}_{\mathcal{N}}F(x_k) = \sum_{i=0}^{N} F(x_i)g_i'(x_k)$$

and defines the $Differentiation\ Matrix$

$$\mathcal{D} = g_i'(x_k)$$

Approximation Results

$$||F - \mathcal{P}_N F|| \leq K \frac{||F||_s}{N^s}$$
$$||F - \mathcal{I}_N F|| \leq K \frac{||F||_s}{N^s}$$

Approximation Theory

- We assume that
 - -f(x) is in $L^{2}[-1,1];$
 - there is a subinterval $[a, b] \subset [-1, 1]$ in which f(x) is analytic;
 - there exists an orthonormal family $\{\Psi_k(x)\}$, under a scalar product (
- Denote

$$f_N(x) = \sum_{k=0}^{N} (f, \Psi_k) \Psi_k(x)$$

•

$$\lim_{N \to \infty} |f(x) - f_N(x)| = 0$$

almost everywhere in $x \in [-1, 1]$.

• Denote $\xi = -1 + 2\frac{x-a}{b-a}$ such that if $a \le x \le b$ then $-1 \le \xi \le 1$.

Definition:

The two parameters family $\{\Phi_k^{\lambda}(\xi)\}$ is called a **Gibbs complementary** to the

(a) Orthogonality

$$<\Phi_k^{\lambda}(\xi), \Phi_l^{\lambda}(\xi)>_{\lambda} = \delta_{kl}.$$

(b) Spectral Convergence

The expansion of an analytic function $g(\xi)$ in the basis $\Phi_k^{\lambda}(\xi)$ converges ex

$$\max_{-1 \le \xi \le 1} \left| g(\xi) - \sum_{k=0}^{\lambda} \langle g, \Phi_k^{\lambda} \rangle \rangle_{\lambda} \Phi_k^{\lambda}(\xi) \right| \le e^{-q_1 \lambda}, \qquad q_1 > 0$$

(c) The Gibbs Condition

There exists a number $\beta < 1$ such that if $\lambda = \beta N$ then

$$\left| <\Phi_l^{\lambda}(\xi), \Psi_k(x(\xi))>_{\lambda} \right| \max_{-1\leq \xi\leq 1} \left| \Phi_l^{\lambda}(\xi) \right| \leq \left(\frac{\alpha N}{k}\right)^{\lambda}, \qquad k>N, \ l\leq 1$$

Comments:

- Condition (b) implies that the expansion of a function g in the basis $\{\Phi_l^{\lambda}\}$ nentially fast if g is analytic in $-1 \leq \xi \leq 1$ (corresponding to $a \leq x \leq b$)
- Condition (c) states that the projection of $\{\Psi_k\}$ for large k on the low mo small l) is exponentially small in the interval $-1 \le \xi \le 1$.

Theorem

- $f(x) \in L^2[-1,1]$ and analytic in $[a,b] \subset [-1,1]$.
- $\{\Psi_k(x)\}\$ is an orthonormal family with the inner product (\cdot, \cdot) .
- $\{\Phi_k^{\lambda}(\xi)\}\$ is a Gibbs complementary to the family $\{\Psi_k(x)\}\$ as defined in (a

Then

$$\max_{a \le x \le b} \left| f(x) - \sum_{l=0}^{\lambda} \langle f_N, \Phi_l^{\lambda} \rangle_{\lambda} \Phi_l^{\lambda}(\xi(x)) \right| \le e^{-qN}, \qquad q > 0.$$

Comment:

• Even if we have a slowly converging series

$$\sum_{k=0}^{N} (f, \Psi_k) \Psi_k(x)$$

it is still possible to get a rapidly converging approximation to f(x) if one of function that yields a rapidly converging series to f as long as the projection the basis $\{\Psi\}$ on the low modes in the new basis is exponentially series.

Examples

• In all the following examples, we choose

$$\Phi_k^{\lambda}(\xi) = \frac{1}{\sqrt{h_k^{\lambda}}} C_k^{\lambda}(\xi)$$

where $C_k^{\lambda}(\xi)$ is the Gegenbauer polynomial and h_k^{λ} is the normalization finner product is defined by

$$\langle f, g \rangle_{\lambda} = \int_{-1}^{1} (1 - \xi^2)^{\lambda - \frac{1}{2}} f(\xi) g(\xi) d\xi$$

We have to check only if:

•

$$\left| \int_{-1}^{1} (1 - \xi^2)^{\lambda - \frac{1}{2}} C_l^{\lambda}(\xi) \Psi_k(x(\xi)) d\xi \right| \leq \left(\frac{\alpha N}{k} \right)^{\lambda},$$

for $k > N, l \le \lambda = \beta N, 0 < \alpha < 1$.

Example 1: Fourier Case

$$\Psi_k(x) = \frac{1}{2}e^{ik\pi x}, |k| \le \infty.$$

We would need to verify that

$$\left| \int_{-1}^{1} (1 - \xi^2)^{\lambda - \frac{1}{2}} e^{ik\pi x(\xi)} C_l^{\lambda}(\xi) d\xi \right| \leq \left(\frac{\alpha N}{k} \right)^{\lambda},$$

for $k > N, l \le \lambda = \beta N, 0 < \alpha < 1$.

There is an explicit formula for the integral

$$\int_{-1}^{1} (1 - \xi^2)^{\lambda - \frac{1}{2}} e^{ik\pi x(\xi)} C_l^{\lambda}(\xi) d\xi = h_l^{\lambda} \Gamma(\lambda) \left(\frac{2}{\pi k \epsilon}\right)^{\lambda} i^l(l + \lambda) J_{l+\lambda}(\pi k \epsilon)^{-1} \int_{-1}^{1} (1 - \xi^2)^{\lambda - \frac{1}{2}} e^{ik\pi x(\xi)} C_l^{\lambda}(\xi) d\xi = h_l^{\lambda} \Gamma(\lambda) \left(\frac{2}{\pi k \epsilon}\right)^{\lambda} i^l(l + \lambda) J_{l+\lambda}(\pi k \epsilon)^{-1} \int_{-1}^{1} (1 - \xi^2)^{\lambda - \frac{1}{2}} e^{ik\pi x(\xi)} C_l^{\lambda}(\xi) d\xi = h_l^{\lambda} \Gamma(\lambda) \left(\frac{2}{\pi k \epsilon}\right)^{\lambda} i^l(l + \lambda) J_{l+\lambda}(\pi k \epsilon)^{-1} \int_{-1}^{1} (1 - \xi^2)^{\lambda - \frac{1}{2}} e^{ik\pi x(\xi)} C_l^{\lambda}(\xi) d\xi = h_l^{\lambda} \Gamma(\lambda) \left(\frac{2}{\pi k \epsilon}\right)^{\lambda} i^l(l + \lambda) J_{l+\lambda}(\pi k \epsilon)^{-1} \int_{-1}^{1} (1 - \xi^2)^{\lambda - \frac{1}{2}} e^{ik\pi x(\xi)} C_l^{\lambda}(\xi) d\xi = h_l^{\lambda} \Gamma(\lambda) \left(\frac{2}{\pi k \epsilon}\right)^{\lambda} i^l(l + \lambda) J_{l+\lambda}(\pi k \epsilon)^{-1} \int_{-1}^{1} (1 - \xi^2)^{\lambda - \frac{1}{2}} e^{ik\pi x(\xi)} C_l^{\lambda}(\xi) d\xi = h_l^{\lambda} \Gamma(\lambda) \left(\frac{2}{\pi k \epsilon}\right)^{\lambda} i^l(l + \lambda) J_{l+\lambda}(\pi k \epsilon)^{-1} \int_{-1}^{1} (1 - \xi^2)^{\lambda - \frac{1}{2}} e^{ik\pi x(\xi)} C_l^{\lambda}(\xi) d\xi = h_l^{\lambda} \Gamma(\lambda) \left(\frac{2}{\pi k \epsilon}\right)^{\lambda} i^l(l + \lambda) J_{l+\lambda}(\pi k \epsilon)^{\lambda} \int_{-1}^{1} (1 - \xi^2)^{\lambda} d\xi$$

where $\epsilon = b - a$ and $J_{\nu}(x)$ is the Bessel function.

The Gibbs condition is satisfied when

$$\beta = \frac{2\pi\epsilon}{27}.$$

Example 2: Legendre Case

$$\Psi_k(x) = \frac{1}{\sqrt{h_k^{\frac{1}{2}}}} C_k^{\frac{1}{2}}(x).$$

We need to verify that

$$\frac{1}{\sqrt{h_k^{\frac{1}{2}}}} \left| \int_{-1}^1 (1 - \xi^2)^{\lambda - \frac{1}{2}} C_k^{\frac{1}{2}}(x(\xi)) C_l^{\lambda}(\xi) \, d\xi \right| \, \leq \, \left(\frac{\alpha N}{k} \right)^{\lambda},$$

for $k > N, l \le \lambda = \beta N, 0 < \alpha < 1$.

This had been verified.

Example 3: Gegenbauer Case

$$\Psi_k(x) = \frac{1}{\sqrt{h_k^{\mu}}} C_k^{\mu}(x).$$

We need to verify that

$$\frac{1}{\sqrt{h_k^{\mu}}} \left| \int_{-1}^{1} (1 - \xi^2)^{\lambda - \frac{1}{2}} C_k^{\mu}(x(\xi)) C_l^{\lambda}(\xi) \, d\xi \right| \, \leq \, \left(\frac{\alpha N}{k} \right)^{\lambda},$$

for $k > N, l \le \lambda = \beta N, 0 < \alpha < 1$.

Computer Tomography

We have to recover a density function f(x,y) from its Radon Transform $p(r,\theta)$

$$p(r,\theta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \delta(x \cos(\theta) + y \sin(\theta) - r) dx dy$$

The Slice Theorem:

$$\hat{p}(\rho, \theta) = \hat{f}(\rho \cos \theta, \rho \sin \theta)$$

where

- \hat{p} is the Fourier Transform (in r) of p,
- ullet \hat{f} is the two dimensional Fourier Transform of f.

The DFM

$$p \to \hat{p} \to \hat{f} \to f$$

Linear Hyperbolic Equations

Consider first approximating of

$$\frac{\partial U}{\partial t} = \frac{\partial U}{\partial x}$$

by the Fourier method.

Denote:

• $u_N(x)$ is the PS solution satisfying

$$\frac{\partial u_N}{\partial t}(x_l) = \sum_{i=0}^{N} g_i'(x_l)u_N(x_i)$$

 \bullet $\vec{u}_i = u_N(x_i)$.

The PS can be written as

$$rac{d}{dt}ec{u}=\mathcal{D}ec{u}$$
 .

Since \mathcal{D} is anti-symmetric, stability is assured.

The variable coefficient case

Consider now

$$\frac{\partial U}{\partial t} = a(x) \frac{\partial U}{\partial x}$$

 \bullet The matrix $\mathcal{A}\mathcal{D}$ is not skew symmetric.

How to stabilize?

• Rewrite the equation as

$$\frac{\partial U}{\partial t} = \frac{1}{2}a(x)\frac{\partial U}{\partial x} + \frac{1}{2}\frac{\partial a(x)U}{\partial x} - \frac{1}{2}a'(x)\frac{\partial U}{\partial x}$$

Doubles the amount of work. Loses conservation.

Linear-Analysis

Analysis:

Write the equation as follows

$$\frac{\partial u_N}{\partial t} = \mathcal{I}_N a(x) \frac{\partial u_N}{\partial x}$$
$$= N_1 + N_2 + N_3$$

where

$$2N_{1} = \frac{\partial \mathcal{I}_{N} a u_{N}}{\partial x} + \mathcal{I}_{N} \left(a(x) \frac{\partial u_{N}}{\partial x} \right)$$

$$2N_{2} = \mathcal{I}_{N} \left(a(x) \frac{\partial u_{N}}{\partial x} \right) - \mathcal{I}_{N} \frac{\partial a u_{N}}{\partial x}$$

$$2N_{3} = \mathcal{I}_{N} \frac{\partial a u_{N}}{\partial x} - \frac{\partial \mathcal{I}_{N} a u_{N}}{\partial x}$$

Linear Analysis (Cont.)

Now

•

$$(u_N, N_1 u_N) = 0.$$

Since $\mathcal{AD} + \mathcal{DA}$ is skew symmetric.

•

$$|(u_N, N_2 u_N)| \le K \max_{0 \le x \le 2\pi} |a'|(u_N, u_N)$$

lacktriangle

$$|(u_N, N_3 u_N)| \le (u_N, (-1)^{p+1} \epsilon_N \frac{\partial^{2p} u_N}{\partial x^{2p}})$$

where $\epsilon_N \sim N^{1-2p}$

Stability and Filters

Conclusion:

To stabilize the PS method we can write

$$\frac{\partial u_N}{\partial t} = \mathcal{I}_N a(x) \frac{\partial u_N}{\partial x} + (-1)^{p+1} \epsilon_N \frac{\partial^{2p} u_N}{\partial x^{2p}}$$

Consider

$$\frac{\partial u_N}{\partial t} = (-1)^{p+1} \epsilon_N \frac{\partial^{2p} u_N}{\partial x^{2p}}$$

Let

$$u_N = \sum_{k=-N}^{N} a_k(t) e^{ikx}$$

Then we have

$$\frac{da_k(t)}{dt} = (-1)^{p+1} \epsilon_N(ik)^{2p} a_k(t)$$

Thus

$$a_k(t + \Delta t) = e^{-\epsilon_N k^{2p} \Delta t} a_k(t)$$
 (This is a low pass filter!!!

Stability and Filters (Cont.)

Important:

The dissipation in the Legendre case will be therefore

$$(-1)^{p+1} \left(\frac{\partial}{\partial x} (1-x^2) \frac{\partial}{\partial x}\right)^p$$

Linear Hyperbolic Equations

Consider the hyperbolic system of the form

$$\frac{\partial U}{\partial t} = \mathcal{L}U$$

with initial conditions

$$U(t=0) = U_0$$

• Example: The symmetric hyperbolic system,

$$\frac{\partial U}{\partial t} = \sum_{i=1}^{d} A_i(x_1, ..., x_d) \frac{\partial U}{\partial x_i}$$

Let u be the Fourier Galerkin approximation:

$$(U - u, e^{ikx}) = 0$$
 $-N \le k \le N$
 $(U_0 - u_0, e^{ikx}) = 0$ $-N \le k \le N$

Theorem

$$||U - u|| \le K||U_0||_s \frac{1}{N^{s-1}}$$

This fails for piecewise smooth U_0 . This is not surprising since U is not a smoot

Theorem

Let ϕ be a smooth function, then

$$|(U(T) - u(T), \phi)| \le K||\phi||_s \frac{1}{N^s}$$

Proof

We consider the adjoint problem:

$$V_t = \mathcal{L}^* V$$

with the smooth initial condition:

$$V(t=0) = \phi$$

The Green's identity is derived from

$$\frac{d(U(t), V(T-t))}{dt} = (\mathcal{L}U(t), V(T-t)) - (U(t), \mathcal{L}^*V(T-t))$$
$$= 0$$

So that

$$(U(T), \phi) = (U_0, V(T))$$

We can also show that

$$(u(T), \phi_N) = (u_0, v(T))$$

where v is the Galerkin approximation to V.

ullet Since the problem for V is smooth then

$$||V(T) - v(T)|| \le K \frac{||\phi||_s}{N^{s-1}}$$

lacktriangle

$$(u_0, v(T)) = (U_0, v(T))$$

•

$$(u(T), \phi_N) = (u(T), \phi)$$

Thus

$$(U(T) - u(T), \phi) = (U_0, V(T) - v(T))$$

Comments

- Similar Results are obtained for the collocation (Pseudospectral) method. H initial condition (u_0) has to be the Galerkin approximation to the initial condition (u_0) has to be the Galerkin approximation to the initial condition.
- The Fourier coefficients of u approximate those of U with spectral accuracy for the point values.
- Alternatively, define

$$\phi = \sum (1 - \eta^2)^{\lambda - \frac{1}{2}} C_k^{\lambda}(\eta) C_k^{\lambda}(\xi)$$

for any interval of smoothness, and ϕ vanishes outside.

Then

$$(u, \phi) = u(\xi)$$
 with spectral accuracy.

Nonlinear Equations

Consider

$$\frac{\partial U}{\partial t} + \frac{\partial f(U)}{\partial x} = 0$$

The spectral method is

$$\frac{\partial u_N}{\partial t} + \frac{\partial \mathcal{P}_N f(u_N)}{\partial x} = 0$$

The method is **unstable** (as in the linear case!)

In the Spectral Viscosity Method (SV)

$$\frac{\partial u_N}{\partial t} + \frac{\partial \mathcal{P}_N f(u_N)}{\partial x} = \epsilon_N (-1)^{s+1} \frac{\partial^s}{\partial x^s} \left[Q_m(x, t) * \frac{\partial^s u_N}{\partial x^s} \right]$$

Nonlinear Equations (Cont.)

$$\frac{\partial u_N}{\partial t} + \frac{\partial \mathcal{P}_N f(u_N)}{\partial x} = \epsilon_N (-1)^{s+1} \frac{\partial^s}{\partial x^s} \left[Q_m(x, t) * \frac{\partial^s u_N}{\partial x^s} \right]$$

The operator Q_m can be expressed in the Fourier space:

$$\epsilon_N(-1)^{s+1} \frac{\partial^s}{\partial x^s} \left[Q_m(x,t) * \frac{\partial^s u_N}{\partial x^s} \right] \sim \epsilon \sum_{m < |k| < N} (ik)^{2s} \hat{Q}_k \hat{u}_k e^{ikx}$$

with

$$\epsilon \sim CN^{2s-1}; \qquad m \sim N^{\theta}, \ \ \theta < \frac{2s-1}{2s}; \qquad 1 - \left(\frac{m}{|k|}\right)^{\frac{2s-1}{\theta}} \leq \hat{Q}_k$$

In the Super viscosity

$$\epsilon(-1)^{s+1} \frac{\partial^{2s}}{\partial x^{2s}}$$

Nonlinear Equations (Cont.)

Theorem:

Consider the Fourier Superviscosity method, subject to L^{∞} initial data. Then u_N converges to the entropy solution.

Theorem:

Let u_N be the solution of the SV approximation, subject to bounded initial co

$$||u_N(0)||_{L^{\infty}} + \epsilon^s ||\partial^s u_N(0)||_{L^2} \le Const.$$

then u_N converges strongly to the unique entropy solution.

LeBlanc Problem

The one-dimensional Euler equation

$$\rho_t + (\rho u)_x = 0$$
$$(\rho u)_t + (\rho u u)_x = 0$$
$$E_t + ((E + P)u)_x = 0$$

with

$$E = \frac{P}{\gamma - 1} + \frac{1}{2}\rho u^2$$

and $\gamma = 1.4$.

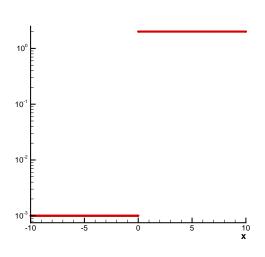
LeBlanc Problem (Cont.)

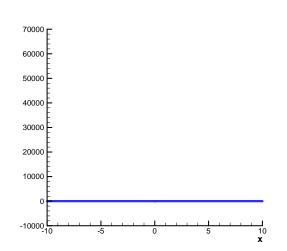
The initial condition is the Riemann data :

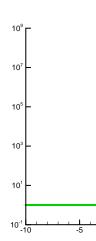
Density

Velocity

Pres







$$\rho = 2, \quad u = 0, \quad P = 10^9 \qquad -10 <= x <= 0$$
 $\rho = 10^{-3}, \quad u = 0, \quad P = 1 \qquad 0 < x <= 10$

and $t_{final} = 10^{-4}$.

LeBlanc Problem (Cont.)

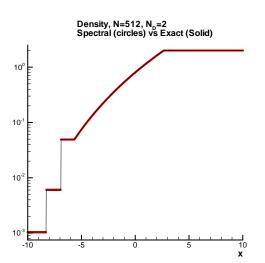
Algorithms:

- Spatial Algorithm :
 - 1. Multi-Domain Chebyshev collocation method (Spectral),
 - Differentiation and Smoothing operations are done via an optimized (Costa & Don);
 - a 9'th order exponential filter used to stabilize the scheme.
 - Riemann Solver applied at the domain interface.
 - The non-oscillatory solutions are obtained by post-processing technic Gottlieb).
 - 2. WENO fifth order finite difference scheme (WENO) with Lax-Frederick
- Temporal Algorithm: Third order TVD Runge Kutta method (Shu and Osher).

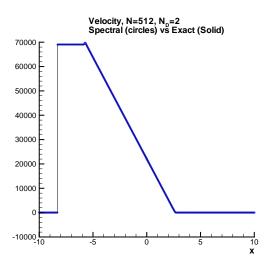
LeBlanc Problem (Cont.)

Spectral Scheme

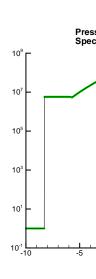
Density



Velocity

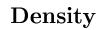


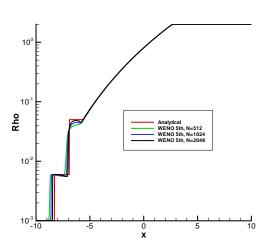
Pres



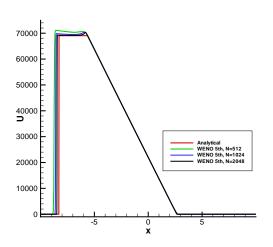
LeBlanc Problem (Cont.)

WENO Scheme

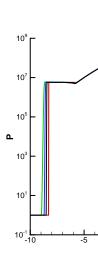




Velocity



Pres



Richtmyer-Meshkov Instability

- Shock induced instability of the interface between fluids of different den Richtmyer and experimented by Meshkov.)
- Growth of the interface amplitude and secondary shear instability promot lence mixing.
- Applications included but not limited to mixing enhancement and inertial

The two-dimensional Euler equations,

$$\mathbf{Q}_t + \mathbf{F}_x + \mathbf{G}_y = 0.$$

The state vector \mathbf{Q} is

$$\mathbf{Q} = (\rho, \rho u, \rho v, E)^{\mathrm{\scriptscriptstyle T}}$$
.

The inviscid fluxes \mathbf{F} and \mathbf{G} are given by

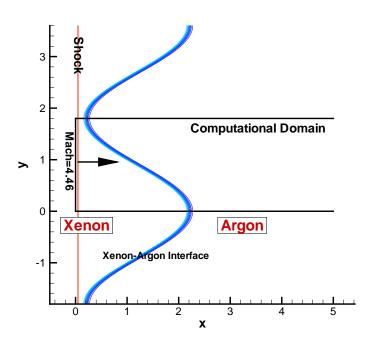
$$\mathbf{F} = (\rho u, \rho uu + P, \rho uv, (E+P)u)^{\mathrm{\scriptscriptstyle T}},$$

$$\mathbf{G} = (\rho v, \rho uv, \rho vv + P, (E+P)v)^{\mathrm{\scriptscriptstyle T}}.$$

where

$$P = (\gamma - 1)(E - \frac{1}{2}\rho \mathbf{U} \cdot \mathbf{U}).$$

Initial Condition:



- Hugoniot-Rankine condition f
- Pre-Shock Temperature T =
- Pre-Shock Pressure P = 0.5 a
- Xenon and Argon density at $10^{-3} \frac{g}{cm^3}$ and $\rho_{Ar} = 0.89 \times 10^{-3}$ at half of the normal atmosph
- Specific heat ratio $\gamma = \frac{5}{3}$
- Atwood number At = 5.4
- Mach number M = 4.46
- Wave Length $\lambda = 3.6~cm$
- Amplitude $a = 1.0 \ cm$

Xenon-Argon interface definition:

$$S(x, y) = \exp(-\alpha |d|^{\beta})$$
 0 < d < 1

where

lacktriangle

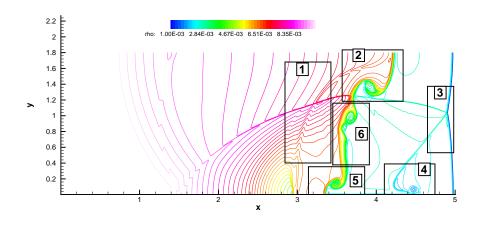
$$d = \frac{(x_i + a\cos(2\pi y/\lambda) + \delta) - x}{2\delta}$$

- $\delta > 0$ is the interface thickness,
- $\beta = 8$ is the interface order,
- $\alpha = -\ln \epsilon$ with ϵ being the machine zero.

Algorithms:

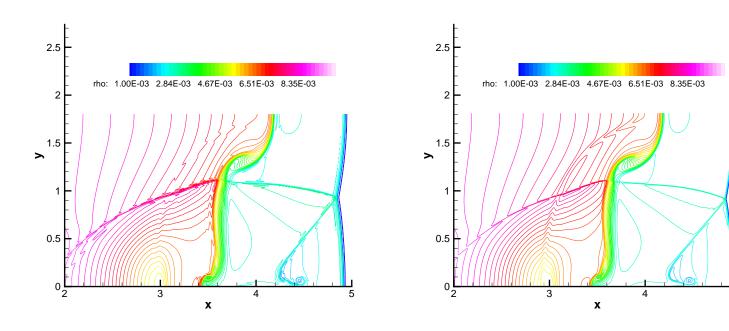
- Spatial Algorithm :
 - 1. Combined Chebyshev and Fourier collocation method (Spectral),
 - Differentiation and Smoothing operations are done via an optimized (Costa & Don);
 - a 10'th and 9'th order exponential filter used for the differentiation an respectively.
 - 2. WENO fifth order finite difference scheme (WENO) with Lax-Frederick
 - 3. Symmetry property in y is utilized to reduce the cost of computation.
- Temporal Algorithm : Third order TVD Runge Kutta method (Shu and Osher).

Regions of Interest:



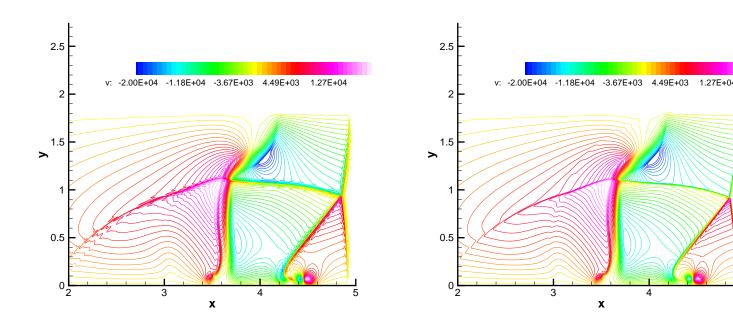
- 1. Reflected shock generation;
- 2. The penetration of th (Ar) fluid forms the S
- 3. Triple point on the tra
- 4. A small jet and its vo Kelvin-Helmholtz inst stability along the cor long time simulation;
- 5. The penetration of the (Xe) fluid forms the E
- 6. Vortical rollups of the

Convergence Study $(M=4.46, \delta=0.6 \ cm, t=50 \ \mu s)$: Density Spectral WENO



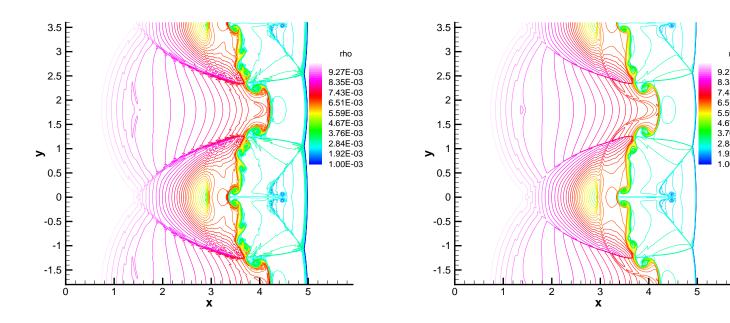
• Grid size for the Spectral and WENO schemes are 1024x512.

Convergence Study $(M=4.46, \delta=0.6 \ cm, t=50 \ \mu s)$: V-Velocity Spectral WENO



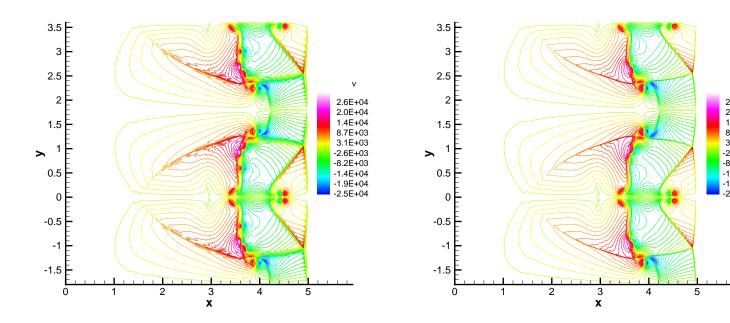
• Grid size for the Spectral and WENO schemes are 1024x512.

Convergence Study $(M=4.46, \delta=0.2 \ cm, t=50 \ \mu s)$: Density Spectral WENO



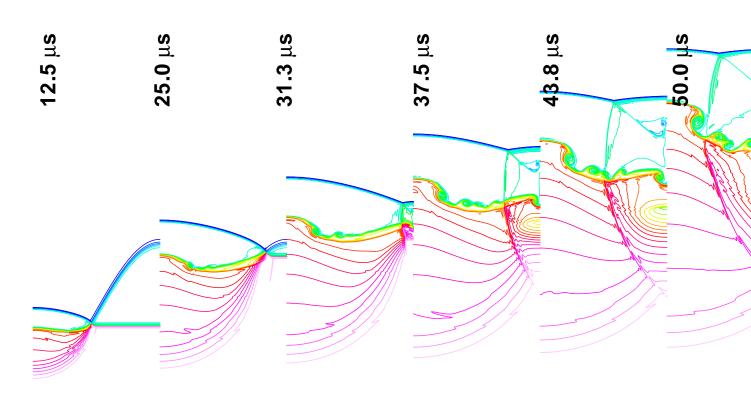
• Grid size for the Spectral and WENO schemes are 1024x256 and 1024x515

Convergence Study $(M=4.46, \delta=0.2 \ cm, t=50 \ \mu s)$: V-Velocity Spectral WENO

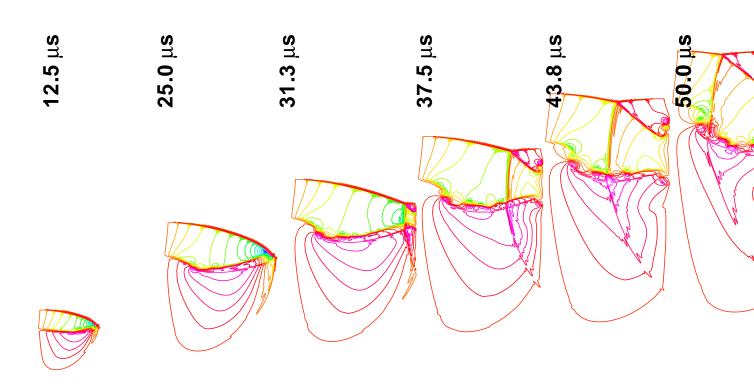


• Grid size for the Spectral and WENO schemes are 1024x256 and 1024x515

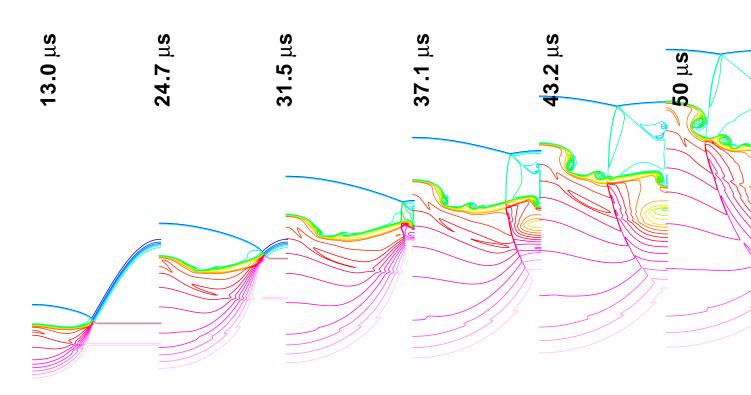
Snapshot of the Density $(M=4.46,\delta=0.2\ cm)$: Spectral Scheme



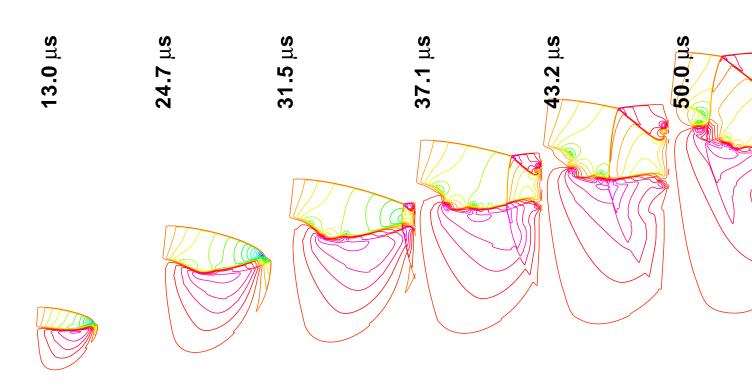
Snapshot of the V-Velocity ($M=4.46, \delta=0.2~cm$): Spectral Sche



Snapshot of the Density $(M=4.46,\delta=0.2\ cm)$: WENO Scheme



Snapshot of the V-Velocity $(M = 4.46, \delta = 0.2 \ cm)$: WENO Scher

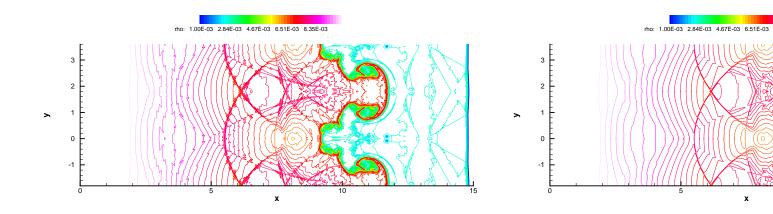


Observations:

- Good agreement of the Global large and medium features between the Spe-WENO scheme.
- Some discrepancy of the fine scale vortical structures along the gaseous intestimulations of this sensitive nature to small perturbation (physically and/o

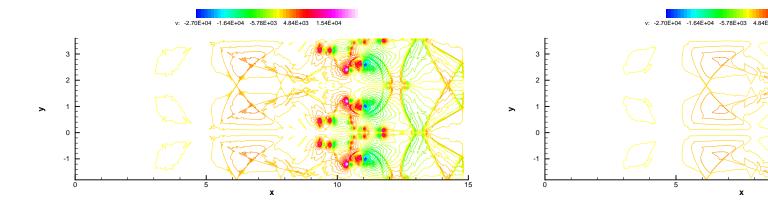
Long time Case $(M=4.46, \delta=0.2\ cm, t=124\ \mu s)$: Density Spectral

WE



WE

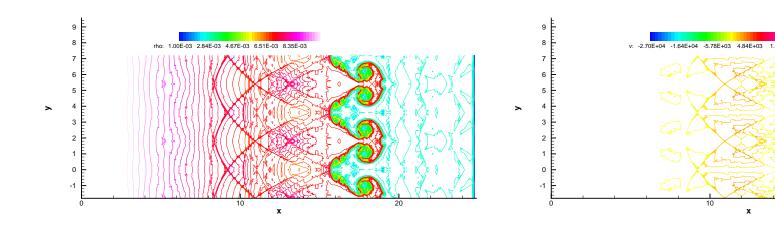
Long time Case $(M=4.46, \delta=0.2\ cm, t=124\ \mu s)$: V-Velocity Spectral



Large Domain Case $(M=4.46, \delta=0.2\ cm, t=237\ \mu s)$: Spectral sc

Density

V-V



High Mach Number ($M=8, \delta=0.2$ cm, t=200 μs): Spectral scheme

Density

V-V

