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Abstract

We investigate the relative importance of di®usion and jumps in a new jump di®usion model
for asset returns. In contrast to the standard modelling of jumps for asset returns, the jump
component of our process can display ¯nite or in¯nite activity, and ¯nite or in¯nite variation.
Empirical investigations of time series indicate that index dynamics are essentially devoid of a
di®usion component, while this component may be present in the dynamics of individual stocks.
This result leads to the conjecture that the risk-neutral process should be free of a di®usion
component for both indices and individual stocks. Empirical investigation of options data tends
to con¯rm this conjecture. We conclude that the statistical and risk-neutral processes for indices
and stocks tend to be pure jump processes of in¯nite activity and ¯nite variation.

1 Introduction

Asset returns have been modeled in continuous time as di®usions by Merton [13] and Black
and Scholes [2], as pure jump processes by Cox and Ross [5], and as jump-di®usions by
Merton [14]. The jump processes studied by the latter authors display ¯nite activity, while
some recent research has considered some pure jump processes with in¯nite activity. Two
examples of these in¯nite activity pure jump processes are the variance gamma model
studied by Madan and Seneta [16] and Madan, Carr, and Chang [15], and the hyperbolic
model considered in Eberlein, Keller, and Prause [6]. The rationale usually given for
describing asset returns as jump-di®usions is that di®usions capture frequent small moves
while jumps capture rare large moves. Given the ability of in¯nite activity jump processes
to capture both frequent small moves and rare large moves, the question arises as to
whether it is necessary to employ a di®usion component when modeling asset returns.
To answer this question, this paper develops a continuous time model which allows

for both di®usions and for jumps of both ¯nite and in¯nite activity. The parameters of
our process further allow the jump component to have either ¯nite or in¯nite variation.

¤We would like to thank seminar participants at Princeton University, the University of Aarhus,
University of Freiburg, ETH Zurich, the University of Chicago, the University of Massachusetts-Amherst,
and the ICBI Global Derivatives 2000 meeting for their comments and discussion, and in particular David
Heath, Ajay Khanna, Sebastian Raible and Liuren Wu.
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Thus, our model synthesizes the features of the above cited continuous time models and
captures their essential di®erences in parametric special cases. The model is called the
CGMY model, after the authors of this paper. We employ this model to study both the
statistical process needed to assess risk and allocate investments, and to study the risk-
neutral process used for pricing and hedging derivatives. Our process generates a closed
form expression for the characteristic function of log prices, but not for the return density.
We nonetheless demonstrate how knowledge of the characteristic function can be used to
econometrically infer the ¯ne structure of the statistical and risk-neutral processes, by
employing our methodology on a time series of stock returns and options data.
We ¯nd that index returns tend to be pure jump processes of in¯nite activity and

¯nite variation, both statistically and risk-neutrally. Thus, the index return processes
appear to have e®ectively diversi¯ed away any di®usion risk that may be present in
individual stock returns. We note however, that even the di®usion components estimated
in individual equity returns appear to be statistically insigni¯cant. In contrast, the jump
components account for consistently signi¯cant skewness levels, that statistically may be
either positive or negative, but risk-neutrally are consistently negative. The signature
pro¯le for the mean corrected density for asset returns appears to be a long spike near
zero, conjoined with two convex fans describing larger returns. The departure in shape
from the Gaussian is quite glaring as the normal distribution is always concave within one
standard deviation of the mean. In contrast, the densities of high activity ¯nite variation
processes are consistent with the data from both time series and option prices. We also
note that since dynamic trading often results in pro¯t and loss distributions similar to
those generated by our process, our research should also be relevant to the literature
on prescribing capital requirements and on designing insurance contracts covering hedge
fund losses.
Thus, the contribution of our paper is three-fold. First, on the theoretical side, we

introduce a new stochastic process which we use to describe asset returns and model option
values. Second, on the computational side, we demonstrate the use of Fourier inversion
via the Fast Fourier transform as a technique for numerically determining statistical
and risk-neutral densities. Finally, on the empirical side, we show that one can usually
dispense with di®usions in describing the ¯ne structure of asset returns, so long as the
jump process used is one of in¯nite activity and ¯nite variation.
From our estimates of the statistical and risk-neutral processes for each of a set of

names and indices, we also o®er some preliminary conjectures on the suggested nature of
the implied measure change. A de¯nite conclusion in this direction must await a system-
atic empirical investigation that jointly estimates the statistical and risk-neutral processes
on the same data. To adequately model the measure change, parametric restrictions im-
posed by the requirements of equivalence for the two measures are undesirable. Thus, it is
instructive to construct the measure change using approximating ¯nite activity processes
which truncate the very small and very large jumps. Our ¯ndings are informative as to
the relevant theoretical directions such research may take. In our tentative view, a critical
input for constructing the measure change is the structure of open interest in the options
market. We hypothesize that large open interest in out-of-the-money puts are a possible
source of the negative skewness observed in option-implied distributions.
We recognize that option pricing for processes with pure jump components forces a

move out of the traditional realm of arbitrage pricing into the domain of equilibrium
pricing. On the positive side, our setting allows us to use option prices to study the
measure change and the nature of the underlying equilibrium. Furthermore, arbitrage
pricing can still be used to value more complex claims relative to option prices, even
though prices jump.
The outline of the paper is as follows. Section 2 presents the details of the synthesizing
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model and its parametric properties. In section 3, the statistical and risk-neutral stock
price model is de¯ned when the underlying uncertainty is a L¶evy process. Section 4
provides analytical details for constructing the higher moments, decomposing expected
total variation into its di®usion and pure jump components, and explicitly illustrating
the measure change process. The estimation methodology and results are presented in
Section 5. Section 6 discusses these results from a variety of perspectives. Section 7
concludes.

2 The CGMY model

Before describing our model, we describe our mechanism for inferring continuous time
sample path properties from discrete observations. We recognize that this inference is
di±cult and fraught with peril. After all, how is one to infer from daily observations,
whether the price process has discontinuities and if so how many? Our path to the ¯ner
structure of asset returns, measured by the log price relative, is through the characteris-
tic function for the logarithm of the stock price. The L¶evy Khintchine theorem uniquely
represents this characteristic function for in¯nitely divisible processes. Armed with this
fundamental result and some modern computational advances in Fourier inversion, max-
imum likelihood estimation of the parameters of the statistical process from time series
data becomes feasible. Furthermore, similar methods may be employed to estimate risk-
neutral parameters from options data as shown in Carr and Madan [3]. We are thus able
to design a probe of the data enabling one to learn about the ¯ne structure of asset returns
from discrete observations, admittedly under some maintained auxiliary hypotheses.
The starting point of our analysis is the geometric Brownian motion model of Black

and Scholes [2] and Merton [13] in which the cumulative return is modeled as the L¶evy
process given by arithmetic Brownian motion. We seek to replace this process with one
that enjoys all of the fundamental properties of Brownian motion, excepting pathwise
continuity and scaling, but permits a richer array of variation in higher moment struc-
ture, especially at shorter horizons. These considerations lead us to focus on the auxiliary
hypotheses embedded in in¯nitely divisible processes of independent and homogeneous
increments. For reasons outlined later, we are also interested in processes with ¯nite
variation jump components. For such processes, the characteristic function is uniquely
characterized by the L¶evy Khintchine theorem in terms of the drift rate a; the di®usion co-
e±cient b, and the L¶evy density k(x). Speci¯cally, if X(t) is an in¯nitely divisible process
with a ¯nite variation jump component and independent and homogeneous increments,
then its characteristic function is uniquely given by:

E
h
eiuX(t)

i
= exp

µ
iuat¡ u

2b2t

2
+ t

Z 1

¡1

¡
eiux ¡ 1¢ k(x)dx¶ :

Heuristically, the L¶evy density measures by k(x)dx the arrival rate of jumps of size x:
The jump component of such processes is completely characterized by this L¶evy density.
Our modeling focus is on candidate parametric choices for this L¶evy density, and so we
begin our analysis by considering pure jump processes.
The next subsection presents the details of the variance gamma model developed by

Madan and Seneta [16], and extended to incorporate skewness by Madan and Milne[12],
and Madan, Carr, and Chang [15]. The latter paper shows that this model permits a
parsimonious description of the volatility smile observed in option prices at all maturities
and for a wide variety of underlying assets. The results of this paper suggest that the
success of the variance gamma process in explaining the smile is likely due to the fact that
the process is a pure jump process, which displays in¯nite activity, but ¯nite variation.
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The following subsection develops the CGMY process which generalizes the variance
gamma process by adding a parameter permitting ¯nite or in¯nite activity, and ¯nite or
in¯nite variation.

2.1 The Variance Gamma Process

There are two representations for the variance gamma process, which are both useful in
di®erent contexts. In the ¯rst representation, which gave rise to the name, the variance
gamma process is interpreted as a Brownian motion with drift, time changed by a gamma
process. Let W (t) be a standard Brownian motion and let G(t; 1; º) be an independent
gamma process with mean rate unity, and variance rate º: The density of the gamma
process at time t is given by

f(g) =
gt=º¡1 exp

¡¡g
º

¢
ºt=º¡( tº )

; (1)

while the characteristic function is given by

ÁG(u; t) = E [exp(iuG(t)] =

µ
1

1¡ iºu
¶t=º

: (2)

The variance gamma process has three parameters, ¾; º; and µ and the processXV G(t;¾; º; µ)
is given by

XVG(t;¾; º; µ) = µG(t; º) + ¾W (G (t; º)) : (3)

The variance gamma process has a particularly simple characteristic function:

ÁVG(u; t) = E [exp(iuXVG(t))] =

µ
1

1¡ iµºu+ ¾2ºu2=2
¶t=º

(4)

This characteristic function is easily obtained from (2) by conditioning on the gamma
time and using the fact that the conditioned random variable is Gaussian.
For the second representation, the V G process is interpeted as the di®erence of two

independent gamma processes, since the characteristic function factors, using the fact
that:

1

1¡ iµºu+ ¾2ºu2=2 =
µ

1

1¡ i´pu
¶µ

1

1 + i´nu

¶
where ´p; ´n satisfy

´p ¡ ´n = µº

´p´n =
¾2º

2
:

It follows that ´p;¡´n are the roots of the equation

x2 ¡ µºx¡ ¾2º=2 = 0
whereby

´p =

s
µ2º2

4
+
¾2º

2
+
µº

2

´n =

s
µ2º2

4
+
¾2º

2
¡ µº
2
:
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The two gamma processes may be denoted Gp(t;¹p; ºp) and Gn(t;¹n; ºn) with respective
mean and variance rates ¹p; ¹n and ºp; ºn: For these gamma processes, we have that
¹p = ´p=º; ¹n = ´n=º; while ºp = ¹2pº and º

2
n = ¹2nº: We note that the ratio of the

variance rate to the square of the mean rate is the same for both gamma processes and
is equal to º: We then have that

XV G(t;¾; º; µ)
law
= Gp(t;¹p; ºp)¡Gn(t;¹n; ºn): (5)

From this representation of the V G process and classical representations for the L¶evy
measures of gamma processes, Madan, Carr and Chang [15] show that the L¶evy density
for the V G process is

kV G(x) =

8<:
¹2n
ºn

exp(¡¹n
ºn
jxj)

jxj for x < 0

¹2p
ºp

exp
¡
¡¹p

ºp
jxj
¢

jxj for x > 0
(6)

The division by the absolute value of the jump size in the V G L¶evy density (6) results
in a process of in¯nite activity, as the V G L¶evy measure integrates to in¯nity. It is also
clear that since jxj is integrable with respect to the V G L¶evy density, the process is one
of ¯nite variation.

2.2 The CGMY process

In this subsection, we generalize the V G L¶evy density to the CGMY L¶evy density with
parameters C;G;M; Y: Speci¯cally, the L¶evy density of the CGMY process kCGMY (x)
is given by

kCGMY (x) =

(
C exp(¡Gjxj)

jxj1+Y for x < 0

C exp(¡Mjxj)
jxj1+Y for x > 0

; (7)

where C > 0; G ¸ 0;M ¸ 0; Y < 2: The condition Y < 2 is induced by the re-
quirement that L¶evy densities integrate x2 in the neighbourhood of 0: We denote by
XCGMY (t;C;G;M; Y ) the in¯nitely divisible process of independent increments with
L¶evy density given by (7). The case Y = 0 is the special case of the V G process with the
parameter identi¯cation

C =
1

º
(8)

G =
1

´n
(9)

M =
1

´p
(10)

These parameters play an important role in capturing various aspects of the stochastic
process under study. The parameter C may be viewed as a measure of the overall level of
activity. Keeping the other parameters constant, and integrating over all moves exceeding
a small level, we see that the aggregrate activity level may be calibrated through move-
ments in C: For example, if one were to construct a model with a stochastic aggregate
activity rate, then one could model C as an independent positive process, possibly fol-
lowing a square root law of its own. In the special case when G =M , the L¶evy measure
is symmetric and in this case, Madan, Carr, and Chang [15] show that the parameter C
provides control over the kurtosis of the distribution of X(t). The case G = M has also
been studied by Koponen [9] who gives an alternative expression for the characteristic
function.
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The parameters G and M respectively control the rate of exponential decay on the
right and left of the L¶evy density, leading to skewed distributions when they are unequal.
For G < M; the left tail of the distribution for X(t) is heavier than the right tail, which is
consistent with the risk-neutral distribution typically implied from option prices. Thus,
when G and M are implied from the risk-neutral distribution, their di®erence calibrates
the price of a fall relative to a rise, while their sum measures the price of a large move
relative to a small one. In constrast, in the statistical distribution, the di®erence between
G and M determines the relative frequency of drops relative to rises, while their sum
measures the frequency of large moves relative to a small ones. The exponential factor in
the numerator of the L¶evy density leads to the ¯niteness of all moments for the process
X(t): As we typically construct a process at the return level, it is reasonable to enforce
¯niteness of the moments at this level.
The parameter Y was studied in Vershik and Yor [17] and it arises in the process for

the stable law. The parameter Y is particularly useful in characterizing the ¯ne structure
of the stochastic process. For example, one may ask whether the up jumps and down
jumps of the process have a completely monotone L¶evy density, and whether the process
has ¯nite or in¯nite activity, or variation. We brie°y describe these properties.

2.2.1 Completely Monotone L¶evy Density

A completely monotone (CM) L¶evy density structurally relates arrival rates of large
jump sizes to smaller jump sizes by requiring among other things that large jumps arrive
less frequently than small jumps. Completely monotone L¶evy densities are essentially
mixtures of exponential functions by virtue of Bernstein's theorem, which shows that all
such densities may be written in the form

k(x) =

Z 1

0

e¡ax³(da) (11)

for some positive measure ³: In the sequel we shall be concerned with measures that are
absolutley continuous with respect to Lebesgue measure and ³(da) = w(a)da for some
positive weighting function w(a): This restriction on L¶evy densities is useful in limiting
the class of pure jump models one may entertain, and the condition is intuitively a
reasonable one. For a variety of other models along these lines the reader is referred to
Geman, Madan, and Yor [8].

2.2.2 Finite Variation Process

From the perspective of option pricing theory, processes of ¯nite variation (FV ) or ¯nite
activity (FA) are potentially more useful in explaining the measure change from the
statistical to the risk-neutral process as they permit greater °exibility between the local
characteristics of the martingale components under the two measures. For example,
for in¯nite variation processes like Brownian motion, the volatility and hence the local
martingale component is invariant under an equivalent change of measure. For in¯nite
variation jump processes, like the stable laws with exponent above unity, equivalence of
the measure change implies (see Jacod and Shiryaev [10] condition 3.25 page 160) that
the di®erence between the risk neutral and statistical L¶evy densities be of ¯nite variation
and this imposes the restriction that the two processes have the the same exponent, or
heuristically speaking that they be of in¯nite variation in the same way. Clearly, if the
processes are themselves of ¯nite variation, then the di®erence in the L¶evy densities will
also be of ¯nite variation and hence no parametric restriction is required on account of this
condition. These observations are important in the light of evidence from time series and
from options data which indicates that risk-neutral volatilities are substantially higher
than their statistical counterparts.
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The °exibility of ¯nite activity (FA) processes is even greater than that of in¯nite
activity ¯nite variation processes, since Jacod and Shiryaev [10] (see condition 4.39, c,
(v), page 246) show that parametric restrictions may also be imposed by requiring equiv-
alence for the latter class of processes. Equivalence essentially requires that the Hellinger
distance between the L¶evy densities be ¯nite. In particular, one may not have one process
be of ¯nite activity, while the other is of in¯nite activity. Heuristically, one may say that
the two processes must be of in¯nite activity in the same way. For the speci¯c case of
CGMY, one may not change C or Y under an equivalent measure change.1

If, however, the data suggests that these parameters do change, it is reasonable to
drop down to an approximating class of ¯nite activity (FA) processes, and view the L¶evy
process models as truncated in a small neighbourhood of zero. The required integrability
conditions are then satis¯ed. From such a perspective, the measure change may always be
constructed in the complement of a neighbourhood of zero. The resulting advantage from
an empirical standpoint is that one may freely calibrate all parameters to the respective
statistical and risk neutral data, and then learn the nature of the measure change made
by the market on the approximating ¯nite activity process.

2.2.3 Finite Activity Process

Processes of ¯nite activity (FA) are of interest as one may wish to group assets by their
activity levels. Thus, the use of in¯nite activity processes in mathematical ¯nance is
best viewed as a ¯rst approximation designed to study highly liquid markets with large
activity. The properties described above are all related to values for Y being in certain
regions that are described in Table 1

TABLE 1
Process Properties and Ranges for the Parameter Y

Range of Y Values Properties of Process
Y < ¡1 Not CM with FA
¡1 < Y < 0 CM with FA
0 < Y < 1 CM, In¯nite Activity, FV
1 < Y < 2 CM, In¯nite Variation, Finite Quadratic Variation

These properties will be demonstrated formally in Theorem 2.
The motivation for pursuing closed form solutions for densities and for option prices

is frequently that the model then constitutes a tractable probe for data, permitting real-
time parameter estimation from time series returns and from option prices. Although we
do not have closed forms for these entities in the case of the CGMY model, we are able to
exploit the fact that the characteristic function of the process is available in closed form.
Theorem 1 below displays the required characteristic function.

Theorem 1The characteristic function for the in¯nitely divisible process with indepen-
dent increments and the CGYM L¶evy density (7) is given by

ÁCGMY (u; t;C;G;M; Y ) = exp
¡
tC¡(¡Y )©(M ¡ iu)Y ¡MY + (G+ iu)Y ¡GY ª¢ :

Proof. From the L¶evy Khintchine theorem, we have that

ÁCGMY (u; t) = exp

µ
t

Z 1

¡1

¡
eiux ¡ 1¢ kCGMY (x)dx

¶
:

1We are grateful to Sebastian Raible for drawing our attention to this condition.
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The integral in the exponent may be written as the sum of two integrals of the formZ 1

0

¡
eiux ¡ 1¢C exp(¡¯x)

x1+Y
dx

for ¯ equal to G andM respectively, with iu replaced by ¡iu for ¯ = G. This integration
may be performed as follows.Z 1

0

Cx¡Y¡1 [exp(¡(¯ ¡ iu)x)¡ exp(¡¯x)] dx = C

Z 1

0

(¯ ¡ iu)Yw¡Y¡1 exp(¡w)dw ¡

C

Z 1

0

¯Y w¡Y¡1 exp(¡w)dw

= C¡(¡Y )
h
(¯ ¡ iu)Y ¡ ¯Y

i
The result follows on substituting M and G for ¯; and evaluating the case ¯ = G at ¡iu:

Theorem 2The CGMY process

i) has a completely monotone L¶evy density for Y > ¡1
ii) is a process of in¯nite activity for Y > 0

iii) is a process of in¯nite variation for Y > 1

Proof. For property i); we note that for Y < ¡1; the quantity 1 + Y is negative and
the L¶evy density x¡(1+Y ) exp(¡¯x) for ¯ = G;M increases near zero and then declines to
zero as x tends to in¯nity. Hence, the density is clearly not completely monotone. When
(1 + Y ) > 0; we may write

1

x1+Y
exp(¡¯x) =

Z 1

¯

(a¡ ¯)Y
¡(1 + Y )

e¡axda

whereby we have complete monotonicity with weighting function 1a>¯(a¡¯)Y =¡(1+Y ):
For property ii); we note that for negative values of Y; the L¶evy measure integrates

to a ¯nite value in the neighbourhood of zero and so we have a process of ¯nite activity.
When Y exceeds zero however, the L¶evy measure integrates to in¯nity near zero and we
have an in¯nite activity process.
For property iii); we note that jxj kCGMY (x) has a ¯nite integral near zero for Y < 1;

while this integral is in¯nite for Y > 1:

3 The CGMY Stock Price Process

We model the martingale component of the logarithm of the stock price by the CGMY
process. This is a fairly robust parametric class of stochastic processes consistent with
a wide range of possible return distributions over ¯nite holding periods. Besides being
capable of calibrating to various levels of skewness and kurtosis, the CGMY model can
also be used to study the nature of the ¯ne structure of the stochastic process, as re°ected
in the parameter Y: To appreciate the breadth of possible densities, ¯gure (1) graphs
the density for log quarterly returns in various parameter settings. The parameters are
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Figure 1: Densities for Quarterly Returns Under the CGMY model. Shown are ¯ve
curves, the base case (a) and departures obtained by doubling ¾; º; µ or halving Y:

referred to in their V G formulation with Y as the additional parameter. We present in
curve `a', the base case for ¾ = :25; º = :2; and µ = ¡:5, a typical setting for SPX.
We also initially set Y = 0:5: The other curves double ¾ (curve `b'), double º (curve `c'),
double µ (curve `d'), and halve Y (curve `e'). A variety of possible shapes and departures
from normality may be observed.

3.1 The Statistical Stock Price Process

The CGMY model assumes that the martingale component of the movement in the
logarithm of prices is given by the CGMY process. Hence, the stock price dynamics are
assumed to be given by

S(t) = S(0) exp ((¹+ !)t+XCGYM(t;C;G;M; Y )) (12)

where ¹ is the mean rate of return on the stock and ! is a \convexity correction", de¯ned
by

exp(¡!t) = ÁCGYM(¡i; t;C;G;M; Y ): (13)

Equations (12,13) de¯ne the evolution of the statistical process for the stock price.
With a view to assessing the relevance of an additional di®usion component in our context,
we next extend the model to include an orthogonal di®usion component. De¯ne the
extended CGMY process as the process

XCGMY e(t;C;G;M; Y; ´) = XCGYM(t;C;G;M; Y ) + ´W (t)

whereW (t) is a standard Brownian motion independent of the processXCGMY (t;C;G;M; Y ):
The extended stock price process has statistical dynamics given by

S(t) = S(0) exp
¡¡
¹+ ! ¡ ´2=2¢ t+XCGMY e(t;C;G;M; Y; ´)

¢
: (14)
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The characteristic function for the logarithm of the stock price in this di®usion ex-
tended CGMY model is given by

Áln(S)(u; t) = exp
¡
iu
¡
ln(S(0) + (¹+ ! ¡ ´2=2)t¢¢ÁCGMY (u;C;G;M; Y ) exp(¡´2u2=2):

(15)
Our statistical analysis employs the characteristic function (15) for the analysis of the
time series of stock returns.

3.2 The Risk-Neutral Stock Price Process

We assume that the risk-neutral process for the stock lies in the robust 5 parameter class
of the di®usion extended CGMY model, with a mean risk-neutral return given by the in-
terest rate. The risk-neutral parameters can di®er from their statistical counterparts and
hence are denoted by eC; eG;fM; eY and é: Letting r denote the continuously compounded
interest rate, the risk-neutral stock price process is

S(t) = S(0) exp
³³
r + e! ¡ é2=2´ t+XCGMY e(t; eC; eG;fM; eY ; é)´ (16)

with the characteristic function for the log of the stock price at time t given by

eÁln(S)(u; t) = exp³iu³ln(S(0) + (r + e! ¡ é2=2)t´´ÁCGMY (u; eC; eG;fM; eY ) exp(¡é2u2=2);
(17)

and e! de¯ned by
exp(¡e!t) = ÁCGMY (¡i; t; eC; eG;fM; eY ):

The parameters eC; eG;fM; eY ; é are the corresponding risk-neutral parameters estimated
using data on option prices.

4 Higher Moments,Total Variation and Measure Changes

Once the statistical and risk-neutral processes have been estimated, we will have estimates
for the parameters C;G;M; Y; ´ and their risk-neutral equivalents eC; eG;fM; eY ; é: Armed
with these parameter estimates, we can determine the skewness and kurtosis under both
the statistical and risk-neutral densities. We are also interested in assessing the relative
magnitudes of the jump and di®usion components. We propose to measure this relative
magnitude on the basis of the proportion of total quadratic variation contributed by each
component. The quadratic variation of the di®usion component is clear, and we determine
here the quadratic variation of the general CGMY component. We are also interested in
the process for the measure change and wish to explicitly illustrate this process. For the
higher moments, we develop explicit formulas for these in terms of the parameters.

4.1 Higher Moments of the CGMYe process

The higher moments of the process may be obtained on successive di®erentiation of the
characteristic function. For a general L¶evy density k(x) and di®usion coe±cient ´; one
may show by di®erentiation that for the random variable X representing the level of a
L¶evy process at time 1; we have

E
h
(X ¡E[X])2

i
= ´2 +

Z 1

¡1
x2k(x)dx

10



E
h
(X ¡E[X])3

i
=

Z 1

¡1
x3k(x)dx

E
h
(X ¡E[X])4

i
= 3

³
E
h
(X ¡E[X])2

i´2
+

Z 1

¡1
x4k(x)dx

It follows that for the CGMYe in particular that

V ariance = ´2 +C¡(2¡ Y )
·

1

M2¡Y +
1

G2¡Y

¸
(18)

Skewness =
C¡(3¡ Y ) £ 1

M3¡Y +
1

G3¡Y
¤

(V ariance)3=2
(19)

Kurtosis = 3 +
C¡(4¡ Y ) £ 1

M4¡Y +
1

G4¡Y
¤

(V ariance)2
(20)

4.2 Decomposition of Quadratic Variation

We focus attention on the statistical process with similar calculations applying to the
risk-neutral case. The total quadratic variation over the interval (0; t) of the di®usion
component in the extended CGMY model with characteristic function (15) is ´2t: For the
jump component, the total quadratic variation is random, but its predictable quadratic
variation and expectation is given byZ 1

0

x2C
exp(¡Mx)
x1+Y

dx+

Z 1

0

x2C
exp(¡Gx)
x1+Y

dx = C¡(2¡ Y )
·

1

M2¡Y +
1

G2¡Y

¸
(21)

We shall use equation (21) in computing the decomposition of quadratic variation reported
later in our empirical results.

4.3 Measure Changes

The process for the Radon-Nikodym derivative of one measure with respect to another is
not very interesting or informative when the underlying ¯ltration is a di®usion with no
jump component. On the other hand, for pure jump processes, Jacod and Shiryaev [10]
show how the change of measure process can be explicitly computed from the statistical
and risk-neutral L¶evy measures. Speci¯cally, we have that·

dQ

dP

¸
t

= exp

µ
¡t
Z 1

¡1
(Y (x)¡ 1) kP (x)dx

¶Y
s·t
Y (¢X(s)): (22)

where Y (x) is given by the equation

kQ(x) = Y (x)kP (x) (23)

Hence, unlike the situation with di®usions where options are redundant assets, option
prices in a jump model can be used to infer the nature of the measure change process,
provided as noted earlier that one restricts attention to approximating FA processes that
exclude moves in a small interval about zero, say (¡"; "): Consequently, one can infer the
prices of jump risks conditional on the size and sign of the jump. For the special case
when the CGMY model describes the statistical and risk-neutral processes, we have that

Y (x) =

8<:
eC
Cx

Y¡eY exp³¡³fM ¡M
´
x
´

x > "eC
C jxjY¡

eY exp³¡³ eG¡G´ jxj´ x < ¡"
(24)

We shall comment further on the explicit form of this measure change in the light of our
parameter estimates.
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5 Data and Estimation Methodology

In an ideal context, one would obtain data on the time series of stock prices and the
prices of options on the stock over a common time interval, and then jointly evalu-
ate the likelihood of observing this data on the assumption that the statistical and
risk-neutral processes are parameterized by the extended CGYM class with parame-
ters C;G;M; Y; ´; eC; eG;fM; eY ; é; along with the mean return ¹ of the statistical process.
We estimate the statistical parameters from time series data on the asset prices over the
period January 1, 1994 to December 31, 1998. For the risk-neutral process, we follow
the traditional practice established in the literature (See Bakshi, Cao and Chen [1]) and
estimate risk-neutral parameters on a set of days from closing option prices. We discuss
the details of each of these two estimations separately in the following two subsections.
The data for both estimations was made available by Morgan Stanley Dean Witter

and comprised time series on 13 stock prices with ticker symbols AMZN, BA, GE, HWP,
IBM, INTC, JNJ, MCD, MMM, MRK, MSFT, WMT, XON and 8 market indexes with
tickers BIX, BKX, DRG, RUT, SPX, SOX, XAU, XOI. For the risk-neutral estimates, we
employed closing option prices on 5 underlying assets AMZN, IBM, INTC, MSFT, and
SPX for ¯ve mid-month Wednesdays 10/14/1998, 11/11/1998, 12/09/1998, 01/13/1999,
02/10/1999, with maturities between one and two months. The option prices are mid-
market quotes for European options obtained by determining volatility using a ¯nite
di®erence American option pricing model calibrated to market American option prices
where appropriate, and then determining a European option price from this volatility
estimate.

5.1 The Statistical Estimation and Results

For each underlying asset, we formed the time series of daily log price relatives and then
estimated the parameters of the L¶evy density C;G;M; Y; ´ from the mean-adjusted return
data. Direct maximum likelihood estimation is computationally expensive as it requires
a Fourier inversion for each data point to evaluate the density, and these inversions must
be nested into a gradient search optimization algorithm for the parameter estimation.
The fast Fourier transform was used to invert the characteristic function once for each

parameter setting. This method e±ciently renders the level of the probability density
at a prespeci¯ed set of values for returns. For integration spacing of :25; the density is
obtained at a return spacing of 8¼=N where N is a power of 2 used in the fast Fourier
discrete transform. For N = 4096; the return spacing is too coarse at :00613592:We used
instead N = 16384; and a return spacing of :00153398:
With the density evaluated at these pre-speci¯ed points, we binned the return series

by counting the number of observations at each pre-speci¯ed return point, assigning data
observations to the closest pre-speci¯ed return point. We then searched for parameter
estimates that maximized the likelihood of this binned data. The reported estimates are
thus for this binned maximum likelihood estimation using the fast Fourier transform.
For the standard errors, we employ the inverse of the information matrix when the

parameter estimates are in the interior of the parameter space. In the cases where the
di®usion coe±cient is estimated at the boundary of the parameter set at the value of 0,
we provide the conditional standard errors of the other parameter estimates on inversion
of the partial information matrix with respect to the other interior parameter estimates.
To test the null hypothesis that the di®usion coe±cient is zero, which is a test on the
boundary of the parameter space, we employ a locally mean most powerful (LMMP) test
statistic developed by King and Wu [11]. The statistic is normal with mean zero and unit
variance under the null hypothesis and is reported when it is positive. It is based on the
score function computed at the null.
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The results of the estimates for 13 names and 8 indices are presented in Table 2 using
both parameterizations, the implied V G parameters, and the proper CGMY parameters.
The estimation was conducted in the parameterization ¾; º; µ; ´; Y with C;G;M computed
internally in accordance with equations (8,9,10). In a few cases standard errors were not
available due to a lack of positive de¯niteness of the estimated information matrix.

TABLE 2

Results of Maximum Likelihood Estimation of the binned data on continuously com-
pounded daily returns at a return spacing of :001534: We report the V G parameter
estimates ¾; º; µ and the transform to C;G;M as per equation (8,9,10), along with the
di®usion parameter estimate ´ and the ¯ne structure parameter estimate Y . The ¯-
nal column reports the log likelihood and the LMMP; Z statistic where appropriate.
Standard errors are in parentheses.

13



¾ º µ ´ Y C G M LL=Z
BA .2428 .0152 .0118 .0914 -.0719 65.65 47.38 46.98 3354.93

(.1425) (.0251) (.0011) (.1927) (.3461) .7036
GE .1331 .0468 .0123 .0164 .0037 21.34 49.78 48.40 3551.80

(.1348) (.1359) (.0007) (.0929) (.5842) .1495
HWP .2239 .0389 .0160 .0981 .0931 25.72 32.36 31.72 3048.21

(.1227) (.0652) (.0014) (.1730) (.3621) 1.2088
IBM .0706 .6655 -.1243 .0201 .7836 1.5027 22.18 27.12 3262.24

(1.0209) (.9959) (.0017) (.0183) (.2373) 1.7919
INTC .6879 .0020 .0194 1e-5 -.7904 4.9428 45.74 45.66 2996.86

(.6679) (.0047) (.0011) (.6356) NA
JNJ .0424 .0951 0 .0113 .7515 10.5206 108.06 108.06 3527.91

(.0107) (.0614) (.0033) (.0131) (.1123) .5925
MCD .0162 12.14 5.2e-8 7.9e-4 1.50683 .0823 25.04 25.04 3515.78

(.0034) (9.8020) (.1097) (.001) (.1449) NA
MMM .1888 .0075 .0081 9e-6 1.0023 133.77 86.86 86.41 3595.23

(.0584) (.0066) (.0019) (.1592) NA
MRK .1168 .0689 .0135 1.8e-6 .1172 14.5034 47.113 45.129 3434.08

(.0982) (.1758) 9e-4 (.0623) (.4745) NA
MSFT .2305 .0036 .0085 .3815 .1191 280.11 102.84 102.53 3112.5

(.0479) (.0027) NA (.3288) NA 1.8599
WMT .1905 .0422 .0161 .0268 -.0963 23.70 36.59 35.70 3236.39

(.1891) (.1149) (7.8e-4) (.1463) (.6482) .1749
XON .0709 .0255 -5.5e-6 8.7e-8 .4789 39.27 124.99 124.99 3664.43

(.0199) (.0202) (.0166) (.1314) NA
BIX .0189 3.1121 .0018 4.34e-8 1.2341 .3213 47.76 37.42 3710.07

(.0023) (.5491) NA .00003 NA .1014
BKX .1476 .0195 .0088 1.7e-6 .0734 51.34 69.04 68.25 3680.18

(.0743) (.0288) (.0010) (.2599) NA
DRG .0255 .5729 -5.02e-7 4.7e-4 .9315 1.7454 73.39 73.39 3872.48

(.0048) (.3387) (.0044) (.0995) NA
RUT .0597 .0678 -.0035 5.8e-9 .3196 14.75 89.99 91.99 4401.39

(.0218) (.0672) (5.4e-4) (.1831) NA
SOX .0271 2.2557 .00001 5.34e-8 1.3814 .4433 34.76 34.73 2731.49

(.0048) (.8011) (.0129) NA (.0591) NA
SPX .0739 .0403 -.0042 1.9e-10 .2495 24.79 94.45 95.79 4258.5

(.0311) (.0470) (6.6e-4) (.2082) NA
XAU .1909 .0080 .0074 1.66e-7 .3071 125.05 83.04 82.64 2732.58

(.0266) (.0046) NA NA NA NA
XOI .1192 .0073 .0046 .0059 .0684 137.05 139.26 138.61 3112.54

(.0473) (.0071) (.0013) (.0814) (.1917) .0113

The estimated densities have a variety of shapes ranging from a di®usion component
in MSFT to pure jump processes of in¯nite variation in the case of the index DRG. All
of the indices such as SPX or RUT are consistent with processes of in¯nite activity and
¯nite variation. To appreciate further the range of possibilities, we present graphs of ¯ve
of the ¯tted densities along with the empirical scatter of the binned data on daily log
returns. First, we present the characteristic long necks of the SPX and RUT in ¯gures
(2) and (3).
We next present the bell shape structure in MSFT and XAU in ¯gures (4) and (5).
Finally, we present a possible jump di®usion case as re°ected in BA in ¯gure (6).
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Figure 2: Fitted Density and Binned Data for SPX
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Figure 3: Fitted Density and Binned Data for RUT
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Figure 4: Fitted Density and Binned Data for MSFT
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Figure 5: Fitted Density and Binned Data for XAU
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Figure 6: Fitted Density and Binned Data for BA
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5.2 The Risk-Neutral Estimation and Results

For each of the ¯ve underlying assets and for each of the ¯ve days, we obtained parameter
estimates of the risk-neutral process by non-linear least squares minimization of pricing
errors from out-of-the-money closing option prices. For the computation of the model's
option price, we followed Carr and Madan [3] and inverted the analytical Fourier transform
in log strike of the call prices dampened by an exponential factor. The results for the
risk-neutral estimation are presented in Table 3.

TABLE 3

Results of Non-Linear Least Squares Estimation of risk-neutral Parameter Values on
¯ve underlying assets for ¯ve days for a maturity of :1014: Only out-of-the-money options
were utilized in the estimation.We report the V G parameters ¾; º; µ and the transform
to C;G;M as per equation (8,9,10), and the di®usion parameter ´ and ¯ne structure
parameter Y . The ¯nal column reports the average pricing error in each case.

¾ º µ ´ Y C G M APE
spx1014 .3052 .1004 -.9558 .0312 -.0901 9.961 7.61 28.12 .3123
spx1111 .1616 .3277 -.3043 .0292 .1432 3.05 7.57 30.88 .5459
spx1209 .1775 .1704 -.4066 .0254 -.0008 5.86 10.31 36.09 .1324
spx0113 .1420 .2377 -.3657 .0326 .2227 4.206 9.18 45.43 .5379
spx0210 .1292 .0936 -.6990 .0189 .2155 10.69 13.21 97.00 .0632
amzn1014 .9015 .2193 -1.8315 .0684 .3072 4.559 1.78 6.29 .2687
amzn1111 .1207 .0447 -4.607 2e-5 -.0069 22.39 4.82 637.8 .4514
amzn1209 .3999 .0589 -1.8308 .0712 .6442 16.97 7.08 29.97 .3431
amzn0113 1.3423 .0572 .1727 .0021 .2013 17.48 4.502 4.310 .6378
amzn0210 1.185 .0588 -2.141 .0016 -.001 17.02 3.63 6.68 .1498
ibm1014 .4105 .1430 -.6852 .0007 .0873 6.99 5.91 14.04 .0953
ibm1111 .0312 2.386 -.0938 .0428 1.0102 .4190 4.365 191.2 .0358
ibm1209 .1157 .2740 -.2702 .0496 .4464 3.65 10.68 51.06 .0425
ibm0113 .3416 .1041 -.3816 .0278 .1430 9.610 9.97 16.51 .0628
ibm0210 .4344 .1083 -.3726 .0051 .0043 9.23 8.11 12.06 .3965
intc1014 .4072 .1022 -.7057 .0179 .0719 9.78 7.41 15.93 .0238
intc1111 .3517 .0277 .7767 .0003 .0004 36.06 18.67 31.23 .0268
intc1209 .4161 .0059 -1.739 .0026 .0006 170.04 35.40 55.48 .0610
intc0113 .1452 .1536 -.1497 .0869 .5757 6.512 18.75 32.95 .0379
intc0210 .4697 .0144 -1.132 .0437 .020 69.51 20.49 30.75 .0346
msft1014 .4669 .0495 -1.2142 .0631 .0483 20.20 9.14 20.28 .0813
msft1111 .4089 .0279 -.8034 .0041 -.1341 35.78 16.43 26.04 .0609
msft1209 .2242 .9087 -.0881 .0774 .4456 1.10 5.09 8.60 .0606
msft0113 .4757 .0246 -.7350 .0058 .0011 40.62 15.98 22.48 .0823
msft0210 .4383 .0269 -.7797 7e-5 .0003 37.16 16.03 24.14 .0630
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6 Discussion of Results

We discuss the results from four perspectives. First, we consider the issue of skewness
and kurtosis in returns. Next, we consider partitioning the total quadratic variation
into its pure jump and di®usion components. We then address questions related to the
¯ne structure of the process as embedded in the parameter Y: Finally, we close with a
discussion of the nature of the implicit measure change.

6.1 Skewness and Kurtosis

The evidence on statistical skewness is mixed. Of the 20 estimations, µ is signi¯cantly
negative in 5 cases that include SPX and RUT. Computing the exact skewness using the
moment equation (19), we ¯nd negative skewness under the historical measure for just
IBM, RUT and SPX at the respective levels ¡:0461;¡:0047 and ¡:0028. In the rest of
the cases, skewness is zero for 7 cases and slightly positive for the remaining 10 cases.
The kurtosis is generally above 3 and the excess kurtosis is as large as :1758 for WMT,
while it is substantial for INTC where it is estimated at 16:19 when volatility is low at
:02: The historical levels of volatility, skewness and kurtosis as computed by the moment
equations are reported in Table 4.

TABLE 4

Statistical Levels of Volatility, Skewness and Kurtosis as computed using the moment
equations (18),(19) and (20)

Volatility Skewness Kurtosis
BA .2335 .0021 3.0444
GE .1350 .0125 3.1344
HWP .2763 .0055 3.0618
IBM .2385 -.0461 3.0818
INTC .0196 .0103 16.1960
JNJ .2351 0 3.0043
MCD .2458 0 3.0194
MMM .1786 -.0001 3
MRK .1430 .0177 3.1252
MSFT .4834 .00006 3.0008
WMT .1660 .0130 3.1758
XON .2122 0 3.0055
BIX .2102 .0186 3.0180
BKX .1699 .0028 3.0415
DRG .1849 0 3.0120
RUT .1168 -.0047 3.0399
SOX .3781 .00003 3.0058
SPX .1253 -.0028 3.0339
XAU .3583 .00038 3.0052
XOI .1393 .0007 3.0151

In contrast, the risk-neutral process is de¯nitely negatively skewed withM dominating
G and µ negative in every case. The skewness as computed using the moment equations
is negative in every case excluding AMZN on January 13 when it is slightly positive. We
also note that there is a considerable variability in the skewness on our individual stocks
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across time, that show a general decline between October 1998 and February 2000. On
the SPX however, skewness is more stable across time and of a similar order of magnitude.
The risk-neutral kurtosis is substantially higher than the historical levels for this

statistic. On the SPX, excess kurtosis rises to 1:693 on November 11 while the historical
level is just :0339: The risk neutral higher moments are reported in Table 5.

TABLE 5

Risk Neutral Levels of Volatility, Skewness and Kurtosis as computed using the mo-
ment equations (18),(19), and (20)

Volatility Skewness Kurtosis
spx1014 .3999 -.6297 3.6540
spx1111 .2706 -.8196 4.1693
spx1209 .2453 -.7068 3.8643
spx0113 .2849 -.6263 3.6746
spx0210 .3198 -.4077 3.2699
amzn1014 1.3218 -.6204 3.7415
amzn1111 .9779 -.4258 3.2716
amzn1209 1.1042 -.1463 3.0460
amzn0113 1.5042 .0165 3.1150
amzn0210 1.2928 -.2764 3.2289
ibm1014 .5186 -.4817 3.5148
ibm1111 .3197 -.6801 3.9704
ibm1209 .3026 -.4221 3.3411
ibm0113 .4219 -.2411 3.2452
ibm0210 .4532 -.2598 3.3669
intc1014 .4958 -.3812 3.3567
intc1111 .3749 -.1655 3.1017
intc1209 .4374 -.0679 3.0207
intc0113 .3688 -.1001 3.0539
intc0210 .5044 -.0922 3.0454
msft1014 .5688 -.2770 3.1813
msft1111 .3649 -.1978 3.1555
msft1209 .3442 -.4311 3.9836
msft0113 .4900 -.1086 3.0815
msft0210 .4567 -.1341 3.0928

6.2 Decomposition of Quadratic Variation

A surprising feature of the results on the decomposition of quadratic variation is that
for all of the indices, the di®usion component is absent. On the individual stocks, the
di®usion component is also absent for ¯ve companies and is positive but insigni¯cant in
the remaining 7 cases. These are BA, GE, HWP, IBM, JNJ, MSFT, and WMT. We may
employ (21) to determine the proportion of the total quadratic variation contributed by
the di®usion component and this is 15:32, 1:48, 12:60, 0:71, 0:23, 62:29 and 2:61 percent
of the aggregate quadratic variation for BA, GE, HWP, IBM, JNJ, MSFT and WMT
respectively.
A collective view of these results suggests that the di®usion components are diversi¯-

able, while the systematic components, as re°ected in the indices, are pure jump processes.
This view is consistent with a single index model in which the return distribution of the
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single factor is highly peaked near zero, to re°ect long periods of little or no movement,
coupled with fat tails, to re°ect occasional movement of the whole market in one direction
or the other. These ¯ndings also suggest that the di®usion components should be small
in the risk-neutral process, as they can be costlessly diversi¯ed away.
To evaluate this conjecture, we took the parameter estimates for each stock on three

of the ¯ve days with the best ¯t in terms of average pricing error and computed the
proportion of the total quadratic variation attributable to the di®usion component. We
found that in each case, the proportion of the quadratic variation of the risk-neutral
process due to the di®usion component is zero. Hence, we tentatively conclude that
di®usion components are not priced in the market for risks.

6.3 The Fine Structure of Returns

Regarding the ¯ne structure of statistical returns, we ¯nd that for just 3 of the individual
stocks (BA; INTC; and WMT ) the statistical jump component is one of ¯nite activity.
However, the null hypothesis of a V G process cannot be rejected for any of these cases: In
all of the other cases, we have in¯nite activity and except for BIX;SOX and MCD; we
typically estimate a ¯nite variation process. Thus, the jump component mainly re°ects
both in¯nite activity and ¯nite variation for the statistical process.
With respect to the risk-neutral process, we note that essentially all of the processes

are in¯nite activity ¯nite variation processes. This is reasonable in our view as in¯nite
variation comes from a high degree of activity near zero and the pricing process is essen-
tially pricing large moves with little attention to the small moves. These considerations
are suggestive of ¯nite variation in the risk-neutral process. We also observe that in all the
cases, both statistical and risk-neutral, the L¶evy density is consistent with the hypothesis
of complete monotonicity.

6.4 Explicit Measure Changes

For each of the four assets for which we have estimated both the risk-neutral and statistical
CGMY jump components, we use equation (24) to explicitly construct the measure
change function Y (x) on an approximating ¯nite activity process truncating small moves:
We use for each asset the risk-neutral parameter values for one of the ¯ve days on which
the parameters were estimated. Figure (7) presents the graph of the measure change
function on the SPX for January 13 1999.
We observe that the function rises on both sides with a much steeper ascent on the

left. This is indicative of risk premia for large jump sizes on both sides of zero. The
picture is quite typical and is fairly consistently observed in the SPX market. A more
symmetric U shaped measure change is observed for MSFT on December 9 1998, and is
given in ¯gure (8).
A somewhat di®erent shape is observed for INTC as shown in ¯gure (9). This re°ects

signi¯cant premia for down moves but milder premium levels for up moves.
It is interesting to enquire into the reasons for the shape of the measure change

function Y (x): In a two person equilibrium with heterogeneous beliefs and preferences,
investors take a non-zero position in options, as shown for example in Franke, Stapleton
and Subrahmanyam [7] or Carr and Madan [4]. Hence, one may infer the measure change
if one has data on preferences and investor positions. It is well known that the measure
change is given by the marginal utility of the position times the ratio of subjective to
objective probabilities. Speci¯cally, one may write that

Y (x) =
U 0(c(Sex))pS(x)
U 0(c(S))pO(x)
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where U is the investor utility function, pS(x) is the investor subjective probability of a
jump of size x in the log of the stock price, pO(x) is the corresponding true statistical
probability, and c(Sex) is the state contingent claim being held by the investor. For a
Lucas representative agent holding the stock and under rational expectations, i.e. pS(x) =
pO(x); we deduce that

Y (x) =
U 0(Sex)
U 0(S)

a function that is monotonically decreasing in x for all concave utility functions.
When markets are incomplete and beliefs are heterogeneous, one needs to combine

preferences, positions, and beliefs more carefully in order to infer the nature of the func-
tion Y (x): If we take the view that option writers have probability beliefs closest to the
objective statistical probability, then for individuals satisfying pS(x) = pO(x); the posi-
tion c(Sex) = g(x) is that of a delta hedged option writer, with g0(0) = 0 and g00(0) < 0:
The shape of g(x) is that of an inverted U. It follows that

Y (x) =
U 0(g(x))
U 0(g(0))

is of the form observed in our estimations. Furthermore, the relative rate of decrease of g
on the two sides of zero is likely to be in°uenced by the structure of open interest in the
market in put and call options. Hence, we conjecture that the structure of open interest
in the market will be an important determinant of the shape of market risk premia as
re°ected in the measure change function Y (x):

7 Conclusions

This paper generalizes the V G model to allow for L¶evy processes with both a di®usion
component and a L¶evy measure that parametrically allows for processes with a ¯nite
or in¯nite activity, and with ¯nite or in¯nite variation. The ¯nal model is termed the
extended CGMY model and we derive its characteristic function in closed form, which
allows us to describe many of its properties.
The model is estimated on both time series and option data and it is observed that

market indices lack a di®usion component. This leads to the conjecture that di®usion
components observed in individual stock time series are diversi¯ed away in the index, and
hence the risk-neutral process should be devoid of a di®usion component. Estimation on
option price data tends to provide con¯rmation of this conjecture.
We also report signi¯cantly greater skewness and kurtosis in the risk-neutral process

than the statistical process. We ¯nd that risk-neutral processes are mainly in¯nite activ-
ity ¯nite variation processes, while in¯nite variation may be prevalent in the statistical
process for indices and for some stocks.
Broadly, our results suggest that option pricing models should be built using com-

pletely monotone L¶evy densities that integrate to in¯nity and are consistent with ¯nite
variation. We explicitly construct the embedded process for the measure change using
approximating ¯nite activity processes that exclude a small neighbourhood of zero. Our
results lead us to conjecture that the measure change process is related to the structure
of open positions in the market.
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