	Di Crados Math Competition	NAME:	
30 Ap	Elementary Grades Math Competition ril 2005 Round - Grade Five Division	SCHOOL:	
1.	Five Canadian students (each from a difference meeting at a National math competition and gives his provincial flag as a gift to each of How many provincial flags have been give	the other four students.	1
2.	The midpoints of the sides of a square with area 72 square units are joined as shown. Find the area of the shaded region.		2
3.	What is 1.75% of \$12,000?	т N	3
4.	The diagram represents a regular hexagon with a perimeter of 57 cm. Find the length (in cm) of the line segment NR (not drawn).	$S \stackrel{A}{\swarrow} P$	4
5.	Calculate: $\frac{20 \times 40 \times 60 \times 80 \times 100}{1 \times 2 \times 3 \times 4 \times 5} =$		5
6.	$N = 1 + 2 + 3 + \dots + 9 + 10$. Find the land	rgest prime factor of N.	6
7.	Let P be the sum of the first 50 even wh sum of the first 50 odd whole numbers. I	Find the value of $P-Q$.	7
8.	Find the total number of squares (of all sizes) in the diagram.		8
9.	If 1 mm on a map of Vancouver represented by 1.3	ents 25 meters, 3 cm on the map?	

19.	How many multiples of 9^2 are greater	
	than 9^4 and smaller than 9^5 ?	19
20.	The product of three consecutive whole numbers is 46620. What is the sum of these three numbers?	20
21.	M is a two-digit integer. The two-digit integer N is obtained by reversing the digits of M . The difference between M and N is one eleventh $(\frac{1}{11})$ of the sum of M and N . Find the value of $M + N$.	21
22.	Standard Canadian coins are: 1c, 5c, 10c, 25c, 1\$, and 2\$. Find the smallest sum of money that you can't pay using ten or fewer standard coins. Express your answer in cents.	22
23.	What is the smallest whole number greater than 2 that will have a remainder of 2 when divided by any member of the following set {3,4,5,6,8}?	23
24.	What is the smallest whole number with exactly eight factors? (Hint: please note that the number 4 has exactly three factors: 1, 2, and 4).	24
25.	Find the sum of all the 3-digit whole numbers that can be formed by using the digits 4, 5, and 6. (Hint: digits can repeat so the following are valid 3-digit numbers that should be included in the sum: 444, 656, and 645).	25
26.	Two different two-digit whole numbers are selected at random. What is the probability that their product is less than 200. Express your answer as a common fraction. (Hints: (1) there are 90 different two-digit numbers, (2) the pair {10,11} produces the smallest product and the pair {11,18} produces the largest product less than 200).	26