Computer-Assisted Proofs in Geometry

Thomas C. Hales

October 4, 2006

0-0

Computer-Assisted Proofsin Geometry

ThomasC. Hales

October 4, 2006

1 Interval Arithmetic

Interval Arithmetic is a way to do reliable computing on a qarter. It
keeps track of all the round-off errors. Rigorous mathecahtiesults can

be obtained in this way.

Example. Suppose we have a toy model computing device that only
represents the numbers

0,+1,4+2, +4 +8, ...
On this device, we can give an upper boundtter 3) x 5 as follows

(1+3)%5 +—(1+4)%8
— (8) * 8 = 64.

Similarly, we obtain a lower bound

(14+3)*5 +—(1+2)x4
— (2) x4 = 8.

So(1+3)*5 € [8,64].

We extend addition, subtraction, multiplication, and si@n to interval
operations.

Example. We approximatel, 3| + |5, 6] as follows on this device:
11,3] +[5,6] C [4,16].

We approximates, 16]/(2, 64| as follows.

8,16]/[2,64] — [8/64,16/2] — [0, 8].

We can evaluate polynomials on intervals. (The answer di&pen the
syntactical form of the polynomial.)

=T —x

=0

We can approximate analytic functions with Taylor approdimns.

|arctanx — (z — 2°/3)| < z°/5, if x € [0,1]

arctanz € [v —x°/3 —2°/5, 2 — 23 /3 + x°/5].

On a real computer, we can represent numbers more accutfzalyn
this toy model computing device. However, the same idealyayfe still

get bad behavior from — = on the interval—1, 1].

2 Applicationsof Interval Arithmetic

Strange Attractorsin the Lorenz Equations

In 1963, Lorenz introduced the ODE

Sii‘l = —10331 + 10332
jfg — 28513‘1 — X2 — X1T3
Ci?g — —(8/3)333 + T1X2
and found that the solutions are extremely sensitive t@ilrabnditions.

The Lorenz equations have been extensively studied oveetdes, but it
was only in 2002 that W. Tucker proved that the solutions haee
structure of a strange attractor.

Tucker

Tucker does not offer a traditional proof of this result. iat he gives an
algorithm, which he implements in C++. The algorithm usesnval

arithmetic with directed rounding to control the round-effors. By

running the algorithm, he is able to prove the existence tfaange
attractor.

Example: The Double Bubble Problem

In 2004, Hutchings, Morgan, Riterand Ros solved the general double
bubble problem. In 1995, the special case of equal volumeélbslwas

solved with the help of computer by Hass, Hutchings, and&ighl

The computer was used to eliminate various exotic doublélesisuch
as the torus bubble.

Example: The dodecahedral conjecture

In the last lecture, | described the basic strategy of thefpidcLaughlin
uses Interval arithmetic to prove lower bounds on chunksbfme of
Voronoi cells for each polygonal region on the unit sphere.

Example: The Kepler Conjecture

The proof of the Kepler conjecture follows the same outliaée proofs
of Leech and McLaughlin: draw a graph on the surface of thergphe
make estimates for each face of the graph, and collect threast
together into a global bound.

e In 13 spheres, we are estimating the areas of the spherical p@ygo

e In McLaughlin’s case, we are estimating the volumes of trteata
Voronoi cells.

¢ In the proof of Kepler, we are estimating the a modified volume
function on truncated Voronoi cells: called tesring function on
decomposition stars.

e Part of the proof of the Kepler conjecture involves nonlmea
iInequalities

fz1,...,26) <0

e The functionf is an expression i/x, arctan, and rational functions

of x.

e The inequalities express relations among volume, edgeHeng
dihedral angles, solid angles, etc.

The proof of Kepler involves about 1000 such inequalitiesfe
Involving about 6 variables).

Traditional calculus estimates would be far too slow andloeirsome
for this many inequalities.

A program that automates the proving of such inequalities wa
written.

It is based on interval arithmetic

Nonlinear inequalities: Method of Proof

e Take a subdivision of the domain into small rectangles (adgjphe
size of the rectangle to the required accuracy). Take a Tagloes
expansion on each rectangle, with explicit error bound.

e Evaluate the Taylor polynomial by computer to see that tequmlity
holds on each rectangle.

e (Use interval arithmetic to control computer floating pantors.)

3 Linear Programming

Another computational method of great use in optimal geomstinear
programming and linear relaxation.

Vanishing Box Trick

e Let D be a counterexample to the Kepler conjecture.
e PutD in a box.

e Measure the width of the box..

If the width of the box is negative, then the box is empty, dral t
counterexample D does not exist.

More generally, take all counterexamples and put them inpsalya
defined by hyperplanes.

If each system of inequalities is infeasible, then no cowx@mples

exist.

This is linear relaxation: the space of counterexamplesmdimear,
but the set of counterexamples is relaxed into the largasfset
polyhedra.

74,

Linear Programming: Weaknesses of the 1998 pr oof
3 GB of data

The branch and bound arguments were based on extensive
human-computer interaction.

The branch and bound arguments relied on detailed geometric
Information about the space of counterexamples.

To check the correctness of the proof, it is necessary toyshedlogs
of these interactive sessions.

It is hard to articulate a precise theorem proved by the finea
programming/branch and bound methods.

Linear Programming infeasibility
A certificate of infeasibility for the linear system

Ar <c; a<x<b

IS a pair(u, v) such thatu, v, uA + v are non-negative, and
u(c — Aa) + v(b — a) are negative. (Think af as the counterexample,
and(u, v) as the negative width of the box.)

Vanishing-box-trick Theorem: if a certificate of infeasibility exists, then
X does not exist.

Proof: (uA + v)(z — a) is both negative and non-negative.

Linear Programming Specs

| have just produced specs for the linear programming paheproof.

e The geometry is eliminated (only combinatorics and lindgelara
remain).

e The branch and bound makes no reference to the space of
counterexamples.

e Branching follows its own internal logic.
e In fact, the linear programming is now entirely self-contad.

e |t clarifies the various views of inequalities.

This is all part of a formal verification project for the Kepleéonjecture
(called FLYSPECK).

Linear Programming Specs. Nonlinear-linear convertibility

The angles at a vertex satisfy a linear relation, the angteis@r.

The angles at a vertex are nonlinear functions (of the edugths).

The linear programming relations are linear.

The archive of interval arithmetic inequalities is nonhne

Linear programming specs. Nonlinear-linear convertibility

To achieve automation of nonlinear-linear convertibjivtxe
Introduce a new structure, called a formal inequality.

A formal inequality is a unification of the nonlinear and lane
aspects of the inequalities in the Kepler conjecture.

A formal inequality has a deformalization that can be usddhear
programs.

It also admits nonlinear interpretations, such as thosedariatabase
on nonlinear inequalities.

This gives us a procedure to look up formal inequalities in a
nonlinear inequality database.

Formal inequalities can be combined with standard Boolean
operations.

Linear Programming Specs. Removal of Geometry

e The 1998 proof uses extremely detailed information abaait th
geometry of finite clusters of spheres to guide the brancihbandd
process in linear programming. In the new linear prograngnsipec,

the geometry has been completely removed from this parteof th
proof.

e It is now entirely combinatorial and linear programming oreide,
and geometry on the other.

Linear programming specs. Removal of Geometry

e The combinatorial structure of finite clusters are encoded
combinatorially as hypermaps (following Gonthier). Ewghgere
geometrical information is used in the 1998, a flag has been
Introduced (taking finitely many values) that serves as a
combinatorial proxy for the geometry.

e |tis not necessary to understand anything of the geometngéeo
these flags.

Planar Hyper maps

Planar Hypermaps. face map

Planar Hyper maps. node map

Linear Programming Specs. Weak infeasibility

e Inthe 1998 proof, there is no stated theorem about the s=siilbhe
linear programming part of the proof, except that the linear
programming branch-and-bound methods eliminate all the

counterexamples.

e The reason is that it is hard to say exactly what the linear
programming does, except by reference to set of countengeano
the Kepler conjecture.

Linear Programming Spec:. Weak infeasibility

e Inthe 1998 proof, the set of counterexamples to the KC guiues
branch-and-bound operations.

e In the current spec, we define the notion of weak infeasybiltat is,
admissible branch-and-bound operations lead to infddagibi

Linear Programming Specs. Weak infeasibility

e (Linear part of KC) Theorem: Every (suitable) linear system is
weakly infeasible.

e (Linear-nonlinear link) Theorem: A weakly infeasible linear
program does not admit a strongly feasible solution. [Thaskang

box trick.]

e (Thenon-linear part of the KC.) Theorem: If there is a
counterexample to the Kepler conjecture, then it givesangty
feasible solution to a [suitable] linear system.

Summary

There are three computer programs in the proof of the KC.

It Is easy to state what two of the computer programs should do
(Give all tame plane graphs and prove the given list of n@alin
iInequalities.)

It is rather difficult to state what the third computer pragrshould
do (linear programming).

This is the most poorly explained part of the published paddhe
KC.

We finally have an (approximate) specification of what thedin
programming problem should do.

It now seems possible to fully automate the linear programgrpiart
of the proof, rather than rely on long interactive sessiagsyas done
In the 1998 proof.

