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Theorem [Newon-Gregory Problem] It is impossible to arrange tharte
nonoverlapping congruent balls so that they all touch argff@urteenth)

ball.

There have been many false proofs of this result!







The false proofs began to appear in the nineteenth century.

Credit for the first correct proof is due to &te and van der Waerden

Leech gave a nice proof in the 50s.

Musin gave another nice proof two years ago.




Proof by contradiction: assume that there Edalls.

Each sphere center projects to a point on the unit sphere.

Use those points as vertices of a graph on the sphere.

Add the areas of the polygons, and check that their totaliarea
greater thadr.




How did Leech calculate the areas?
Leech doesn’t say. (It probably involved the use of a slide.ju

(The reconstruction of the area-calculatiorPimofs from the Book,
first editionis incorrect.)

The easiest way seems to be by triangulating the sphere, then
calculating the areas of triangles.

In fact, the proof becomes more elementary if we just statt e

triangulation!




Leech’s proof is really a computer proof in which the compuaigput has
been hidden from view.




Leech’s proof also has a combinatorial side. There is oaadulation
that cannot be easily eliminated by adding up the areasalt is
triangulation of the sphere witt2 vertices of degre& and one vertex of

degree. There are? triangles.
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By eliminating the vertex of degreewe get a triangulation of a hexagon
with internal vertices of degreeand external vertices of degrée




1 Dodecahedral Conjecture

Take any packing of congruent balls in space. Yaomnoi cellaround a
ball is the set of points closer to the center of that ball tlvethe center of

any other ball.
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The dodecahedral conjecture asserts that the Voronoifosiimomum
volume is a regular dodecahedron.

Theorem [McLaughlin, 1998] the dodecahedral conjecturauis. t




The two dimensional proof is easier to describe.

In 2D, the optimal Voronoi cell is a regular hexagon. For theob of
optimality, it is enough to show that each Voronoi cell hassilgy at most

m/v/12.




Intersect each Voronoi cell with a disk of radips= 2/+/3 (the radius of
the hexagon).

The truncated Voronol cell is made up of orange truncatemnsgand
untruncated green regions.

Each truncated orange region has density’ = 3/4.




In a green region, the densityd) depends on the angleof the triangle.
(The has two sides of lenggh) The derivative ob is not zero. The
maximum density isr/+/12.
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McLaughlin’s proof of the dodecahedral conjecture borrowategy from
this 2D proof and from Leech’s proof of the problem of 13 sj@ser

e Itis enough to estimate the lower bound of truncated Vorceds.

e Make a graph on the surface of the sphere in the style of Leech.

e a vertex for each face of the truncated VVoronoi cell.

e an edge if the truncated Voronoi faces meet.




The graph is a sort of dual graph to network of edges and esrofthe
Voronoi cell. For example, the graph for the regular dodedadn is the
icosahedron.




Schematically, we get something similar to the picture feeth.

There are three tasks

e Classify all graphs that are potential counterexamplekeo t
dodecahedral conjecture.

e Give lower bounds for the chunk of volume over a region of the
spherical graph.

e Add up the chunks of volumes to see that they always give at tha
dodecahedron.




2 Some Open Problems

e The Kissing Number Problem (Newton-Gregory) problem hdg on

been solved in dimensions & disks), 3 (2 spheres), 424 spheres),
8 and24.

e The Voronoi cell minimization problem (Dodecahedral catyee)
has only been solved in dimensiahands.




3 Optimal Foams

The isoperimetric inequality states the surface area nuamg way to
enclose a region of volumeis the sphere.




A similar question can be asked with two regions: what is tirféase area
minimizing way to separately enclose two regions of givelunee. The
answer (due to Hutchings, Morgan, Riépand Ros) is the double bubble




The proof has to rule out various alternatives, such as ohklewrapped
around another.




The Kelvin problem (still open) asks for the surface areaimiing way
to separate and enclose infinitely many regions of the sahoeno Here
IS Kelvin’s proposal.




The Kelvin cell is a slightly warped Voronoi cell for the bodgntered
cubic sphere packing.




Kelvin’s solution was widely accepted until a counterexsmas found
by two physicists (Phelan and Weaire) in 1994.







The guestion of whether the Phelan-Weaire foam is optinmaérnes an
open guestion.

As | was turning from the subject of packings to foams in meegsh,
Weaire was turning from foams to packings




Theorem (H, 1999) The answer in two dimensions to the foarblpnois
the regular hexagon. This is the perimeter minimizing partiof the
plane into cells of equal area.




This problem was known to geometers at least 36B.C. and isideddy
Pappus of Alexandria in his fifth book.

There is an enormous scientific literature on the subject.




The shape of the honeycomb suggested the rhombic dodeocaltedr
Kepler.




The foam problem is unsolved in dimensions three and higkrgonio
Ros has proposed a variant of Kelvin’s problem, where watpartspace
Into two regions of equal volume in a way that preserves a
crystallographic symmetry group.

He conjectures this gyroid to be the surface area minimigagjtion
(within its symmetry class) of space into two equal volumes.




The subject of optimal geometry is full of interesting prernis and
conjectures. For example, what is the optimal way to coveptane with
congruent disks?




Again, it is the familiar hexagonal arrangement.




In three dimensions and higher, it is completely open. Hetbe
conjecture in three dimensions:




